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ABSTRACT

Filtering and Tracking for a Pedestrian Dead-Reckoning System

by

Surat Kwanmuang

Co-Chairs: A. Galip Ulsoy and Edwin Olson

This thesis proposes a leader-follower system in which a robot, equipped with

relatively sophisticated sensors, tracks and follows a human whose equipped with a

low-fidelity odometry sensor called a Pedestrian Dead-Reckoning (PDR) device. Such

a system is useful for “pack mule” applications, where the robot carries heavy loads

for the humans. The proposed system is not dependent upon GPS, which can be

jammed or obstructed.

This human-following capability is made possible due to several novel contribu-

tions. First, we perform an in-depth analysis of our Pedestrian Dead-Reckoning

(PDR) system with the Unscented Kalman Filter (UKF) and models of varying com-

plexity. We propose an extension that limits elevation errors, and show that our

proposed method reduces errors by 63% compared to a baseline method. We also

propose a method for integrating magnetometers into the PDR framework, which au-

tomatically and opportunistically calibrates for hard/soft-iron effects and sensor mis-

alignments. In a series of large-scale experiments, we show that this system achieves

positional errors of less than 1.9% of the distance traveled.

xii



Finally, we propose methods that allow a robot to use LIDAR data to improve

the accuracy of the robot’s estimate of the humans trajectory. These methods in-

clude: 1) a particle filter method and 2) two multi-hypothesis maximum-likelihood

approaches based on stochastic gradient descent optimization. We show that the

proposed approaches are able to track human trajectories in several synthetic and

real-world datasets.
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CHAPTER I

Introduction

1.1 Motivation

Today, the majority of interactive robots are pre-programmed or tele-operated

robots; researchers, however, have been looking into capable and fully autonomous

robots. There are many contemporary applications where a human would retain

authority and the robots only require partially autonomy. One such example of

partially-autonomous behavior would be having the robot follow a human leader.

This application is also known as “human leader and robot follower” or “leader-

follower”. In a typical application, the human leader would be paired with a robot

follower without the human needing to actually teleoperate the robot. This behavior

has many potential applications for military, transportation, and personal usage.

In the military, these robots could be used to carry massive amounts of supplies

during a mission without having to divert limited manpower (Figure 1.1). This same

behavior can be applied directly to robotic convoys used in various transportation

businesses. Meanwhile, in the realm of personal usage, robots could provide smart

baggage services by following a particular individual through an airport (Figure 1.2),

or provide similar smart cart services in shopping centers.

In order to enable any of these behaviors, a robot must be able to track the po-

sition of the human leader. Although various sensors can be used for tracking, there

1



Figure 1.1: Artist’s rendering of the Squad-X Core Technology concept. The concept
envisions the future of a team of soldiers working together with a robot
follower. (Image courtesy of DARPA)

Figure 1.2: Hop! following suitcase (Garćıa, 2012). The suitcase utilizes bluetooth
receivers to track a Bluetooth beacon from the leader’s phone.

are limitations. Line-of-sight measurements such as cameras or beacons have field-

of-view and range limitations. Global Positioning System (GPS) position tracking is

only available for outdoor environments and can be jammed or obstructed. Addition-

ally, sensors that detect the leader’s surroundings and use the data to match with

the robot’s surroundings—such as a laser scanner—are impractical to mount onto a

human. As a result, we need a method that is less intrusive for tracking a human

leader.

2



1.2 Purpose and Scope

In this thesis, we propose a new leader-follower approach that utilizes a Pedestrian

Dead-Reckoning (PDR) system (Ojeda and Borenstein, 2007a; Borenstein et al., 2009)

on the human leader and a tracking algorithm on the robot follower. Our key idea is to

equip the robot with relatively high-fidelity mapping sensors, and to use observations

of the structured environment to constrain the path of the human.

Position output from the PDR system is not perfect due to performance limita-

tions of the Inertial Measurement Unit (IMU) itself. This results in position errors,

especially elevation and heading error, which limit its usefulness in some applications.

This error may also lead to ambiguity in identifying the exact path taken by the

human leader. To solve this problem, the robot needs a tracking method to combine

leader trajectory data with the robot’s own map.

This thesis consists of two parts. The first focuses on estimating the position of

the human leader. The second describes how the robot combines this data with the

robot’s map, further improve the estimate of the leader’s trajectory.

!
!

Human leader Robot follower 

Chapter 3 
Unscented Kalman 

Filter Attitude 
estimation for PDR 

 

Chapter 4 
Magnetometer 

enhanced for outdoor 
tracking 

 

Chapter 5 
Maximum-likelihood 

tracking for PDR 

Leader-Follower problem  

Figure 1.3: Organization of chapters within this thesis.
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Figure 1.3 shows the organization of the main chapters within this thesis. Chapter

II provides the background necessary for the following chapters. Chapter III explores

the application of Unscented Kalman Filter (UKF) to the PDR problem in order to

improve position estimation in general. Chapter IV focuses on adding magnetometers

to improve position estimation in outdoor environments.

Chapter V presents a new method for tracking leader position that implements

a Maximum-Likelihood (ML) solution and Stochastic Gradient Descent (SGD) tech-

nique. Finally, Chapter VI summarizes the dissertation and research concluding and

discusses future research work.

1.3 Original Contributions

The contributions of this thesis include:

• An in-depth analysis of attitude and position estimation using Unscented Kalman

Filter (UKF) applied to PDR problem and comprehensive comparisons of vari-

ous design-choices such as model complexity and noise model

• A practical and robust calibration method for incorporating magnetometers into

the PDR system to improve position estimation in outdoor environments

• Novel tracking algorithms that fuse both PDR data from the human and LIDAR

data from the following robot, including methods based on particle filters and

Stochastic Gradient Descent (SGD)

• A multi-hypothesis tracking algorithm based on Stochastic Gradient Descent

(SGD) that is both fast and robust

4



CHAPTER II

Background

2.1 The Pedestrian Dead-Reckoning (PDR) system

The goal of the Pedestrian Dead-Reckoning (PDR) project (Ojeda and Boren-

stein, 2007a; Borenstein et al., 2009) was to track the position of a human subject in

real-time. The PDR system uses a foot-mounted Inertial Measurement Unit (IMU),

which includes a three-axis gyroscope, a three-axis accelerometer, and a three-axis

magnetometer. The IMU is strapped to the side or embedded in the heel of the

user’s boot, as shown in Figure 2.1. The side-mounted IMU can be transferred easily

between different users while the in-heel version better protects the IMU from dam-

age and cannot be dislocated easily. The PDR system’s computations are performed

on a portable computer that is located inside a belt pack, together with batteries

and support electronics. The two Micro-Electro-Mechanical Systems (MEMS)-based

IMUs used in the PDR system are Memsense nIMU and Intersense Navchip.

An IMU-based position estimation system combines two functions: the estimation

of distance traveled and the estimation of heading. In the PDR system, the accuracy

of both components is predominantly affected by bias drift (or just “drift”). This is

especially true if a relatively low-performance MEMS-based IMU is used. Drift rates

for both accelerometers and gyroscopes in a MEMS-based IMU are several orders of

magnitude higher than what is found in high-grade aviation IMUs. Of course, the cost

5



Figure 2.1: The foot-mounted IMU of the PDR system has two mounting options.
(a) Side-mounted IMU (the IMU itself is covered by the beige-colored
thermal insulation). (b) In-heel IMU with temperature controlled, shock
resistant housing

of high-grade IMUs is also several orders of magnitude higher than that of the IMUs in

the PDR system. In addition to cost, size is a critical constraint in the PDR system.

In order to embed the IMU in the heel of a regular firefighter or military-style boot,

the device must be very small. Because of this size-limitation, the only currently

suitable IMU technology is Micro-Electro-Mechanical Systems (MEMS). Another

limiting factor is the fact that the peak accelerations and rates of turns made by a

foot, even at normal walking speed, are significantly higher than those found on the

torso of a person. This limits the choice of suitable IMUs to less than a handful of

models that offer the large dynamic range required by that particular IMU location.

A foot-mounted IMU makes wiring more difficult, requires greater dynamic ranges

of the IMU, and may add further difficulties in heading estimation. Nevertheless,

there is still a compelling reason for choosing this mounting location in spite of these

drawbacks: it offers a way to estimate the drift of the accelerometers and subtract

this drift from subsequent readings almost as frequently as once every second.

This method of resetting drift is called Zero Velocity Update (ZUPT), and it is

possible with a foot-mounted IMU because the instrumented foot has zero velocity

6



during the brief moment when the foot is fully in contact with the floor. We call

this moment of zero foot velocity, “the footfall”. Human walking allows ZUPTs to

be performed naturally as frequently as once every other step. Because ZUPTs can

be applied so frequently, errors due to accelerometer drift can be eliminated almost

entirely.

Since the PDR system estimates the distance and direction of the foot motion

itself, there is no need to calibrate the system for each user. Also, the PDR system

works equally well when users walk sideways, backwards, or in uncommon gaits. A

more complete discussion of this function of the PDR system is provided in Ojeda

and Borenstein (2007a) and Borenstein et al. (2009).

2.2 Unscented Kalman Filtering

The Unscented Kalman Filter (UKF) was developed by Julier Uhlmann and

Durrant-Whyte (Julier et al., 1995). UKF is a filter in the Kalman filter family

that has several advantages over the original Kalman Filter (KF) or the Extended

Kalman Filter (EKF). For example, it does not requite Jacobians or explicit lineariza-

tion of non-linear systems, and it often produces better mean and variance estimates

in non-linear problems.

A discrete-time, non-linear, system model with additive noise can be described as:

xk = f(xk−1, uk−1) +Gkwk (2.1)

ỹk = h(xk) + vk (2.2)

where xk is n × 1 state vector at the kth time-step and ỹk is m × 1 measure-

ment vector and uk is a system input. A process noise wk and measurement noise

vk are zero-mean white noise with covariance Qk and Rk, respectively. A function

f(xk−1, uk−1) is a non-linear state propagation function and h(xk) is a non-linear

7



observation function.

Actual (sampling) Linearized (EKF) UT

sigma points

true mean

UT mean

    and covariance
weighted sample mean

mean

UT covariance

covariance

true covariance

transformed
sigma points

UKF

UKF mean

UKF covariance

Figure 1: Example of mean and covariance propagation. a) actual,
b) first-order linearization (EKF), c) new “sampling” approach (UKF).

).
and are scaling parameters. The constant

determines the spread of the sigma points around and is usually
set to . is a secondary scaling parameter2.
is used to incorporate prior knowledge of the distribution of (for
Gaussian distributions, is optimal). Also note that we define
the linear algebra operation of adding a column vector to a matrix,
i.e. as the addition of the vector to each column of the ma-
trix. The superior performance of the UKF over the EKF has been
demonstrated in a number of applications [1, 2, 3]. Furthermore,
unlike the EKF, no explicit derivatives (i.e., Jacobians or Hessians)
need to be calculated.

3. EFFICIENT SQUARE-ROOT IMPLEMENTATION

The most computationally expensive operation in the UKF cor-
responds to calculating the new set of sigma points at each time
update. This requires taking a matrix square-root of the state co-
variance matrix3, , given by . An efficient
implementation using a Cholesky factorization requires in general

computations [5]. While the square-root of is an in-
tegral part of the UKF, it is still the full covariance which is re-
cursively updated. In the SR-UKF implementation, will be prop-
agated directly, avoiding the need to refactorize at each time step.
The algorithm will in general still be , but with improved nu-
merical properties similar to those of standard square-root Kalman
filters [6]. Furthermore, for the special state-space formulation of
parameter-estimation, an implementation becomes possi-
ble.

The square-root form of the UKF makes use of three linear
algebra techniques[5] nl. QR decomposition, Cholesky factor up-
dating and efficient least squares, which we briefly review below:

QR decomposition. The QR decomposition or factorization
of a matrix is given by, , where

is orthogonal, is upper triangu-
lar and . The upper triangular part of , , is

2We usually set to for state-estimation and to for parameter
estimation [1].

3For notational clarity, the time index has been omitted.

Initialize with:

(5)

For ,

Calculate sigma points:

(6)

Time update:

(7)

(8)

5 (9)

(10)

Measurement update equations:

(11)

(12)

(13)

(14)

where =process noise cov., =measurement noise cov.
Algorithm 2.1: Standard UKF algorithm.

the transpose of the Cholesky factor of , i.e.,
, such that . We use the shorthand

notation qr to donate a QR decomposition of a matrix
where only is returned. The computational complexity
of a QR decomposition is . Note that performing a
Cholesky factorization directly on is
plus to form .
Cholesky factor updating. If is the original Cholesky fac-
tor of , then the Cholesky factor of the rank-
1 update (or downdate) is denoted as
cholupdate . If is a matrix and not a vector,
then the result is consecutive updates of the Cholesky
factor using the columns of . This algorithm (available
in Matlab as cholupdate) is only per update.
Efficient least squares. The solution to the equation

also corresponds to the solution of the
overdetermined least squares problem . This can be
solved efficiently using a QR decomposition with pivoting

Figure 2.2: Mean and covariance propagation. (Left) Actual, (Middle) EKF and
(Right) UKF (Van der Merwe et al., 2001)

The UKF has a unique method of propagating covariance through a system model.

In contrast, with a linear KF or EKF filter the covariance P is propagated through a

linear/linearized system matrix F in the form of:

P̄k = FkPk−1F
T
k +Qk (2.3)

The above method has a limitation in a non-linear system in that the covariance

is propagated through a linear approximation version of the system model Fk. For a

highly non-linear system, this method may yield larger approximation errors.

UKF, on the other hand, utilizes a set of points called sigma points which are

generated from the current system state and covariance. These sigma points are

strategically chosen to be located at the mean and symmetrically along the main
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axes of the covariance. For an n-dimensional Gaussian distribution with mean µ and

covariance Σ, the 2n+ 1 sigma points can be generated from:

X(0) = µ (2.4)

X(i) = µ+
(√

(n+ λ)Σ
)
i

for i = 1, ..., n (2.5)

X(i) = µ−
(√

(n+ λ)Σ
)
i−n

for i = n+ 1, ..., 2n (2.6)

where
(√

(n+ λ)Σ
)
i

represents the ith column of the matrix
√

(n+ λ)Σ.

The scalar λ = α2(n + κ) − n indicates how far the spread of the sigma points

vary from the mean. Normally the parameter α is in the range of (0, 1) to control

the spread and κ ≥ 0 to guarantee positive definite-ness of the covariance matrix.

Moreover, each sigma point has two weights associated with it: wm for recovering

mean and wc for recovering covariance. They are defined by:

wm(0) =
λ

n+ λ
(2.7)

wc(0) =
λ

n+ λ
+ (1− α2 + β) (2.8)

wm(i) = wc(i) =
1

2(n+ λ)
for i = 1, ..., 2n (2.9)

The parameter β ≥ 0 incorporates knowledge of the higher order moments of the

distribution. For an exact Gaussian distribution, β = 2 is optimal.

We can see that the process of generating sigma points involves taking a square

root of a matrix (n+λ)Σ. This can be implemented using Cholesky decomposition or

LDL decomposition (Guennebaud and Jacob, 2010). Since the computational com-

plexity of Cholesky decomposition is O(n3) (Trefethen and Bau, 1997), the size of

matrix Σ has substantial effect on computational speed.

The mean µ and covariance Σ can be extracted from the sigma points using the
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following:

µ′ =
2n∑
i=0

wm(i)X(i) (2.10)

Σ′ =
2n∑
i=0

wc(i) (X(i)− µ′) (X(i)− µ′)T (2.11)

In summary, the algorithm for the Unscented Kalman Filter (UKF) is described

in Algorithm 2.1.

Algorithm 2.1 UKF with additive noise model (Van der Merwe et al., 2001)

Initialize x̂0 and P0 For all k, calculate sigma points, γ =
√
n+ λ

Xk−1 =
[
x̂k−1 , x̂k−1 + γ

√
Pk−1 , x̂k−1 − γ

√
Pk−1

]
(2.12)

Time-update step for each sigma point Xk−1(i), i = 0, ..., 2n

Xk(i)− = F (Xk−1(i), uk−1) (2.13)

Recalculate norm and covariance of state variables

x̂−k =
2n∑
i=0

wm(i)X−k (i) (2.14)

P−k =
2n∑
i=0

wc(i)
(
X−k−1(i)− x̂−k

) (
X−k (i)− x̂−k

)T
+Q (2.15)

Measurement-update step for each sigma point

Zk(i) = H(X−k (i)) (2.16)

ẑ−k =
2n∑
i=0

wm(i)Zk(i) (2.17)

Pzz =
2n∑
i=0

wc(i)
(
Zk−1(i)− ẑ−k

) (
Zk(i)− ẑ−k

)T
+R (2.18)

Pxz =
2n∑
i=0

wc(i)
(
X−k−1(i)− x̂−k

) (
Zk(i)− ẑ−k

)T
(2.19)

K = Pxz · P−1
zz (2.20)

x̂k = x̂−k +K(z − ẑ−k ) (2.21)

Pk = P−k −KPzzK
T (2.22)
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In equation (2.1), we assume an additive noise model. In more complex system

model, such as highly non-linear system, the noise model may not be easily linearized

and separated into a linear additive term. One advantage of the UKF is that it is able

to incorporate noise in a non-additive fashion. However, the number of sigma-points

must typically be increased to preserve accuracy.

The system model with a non-additive noise can be written as:

xk = f(xk−1, uk−1, wk) (2.23)

ỹk = h(xk, vk) (2.24)

A summary of the non-additive version of the UKF is shown in Algorithm 2.2. It

can be seen that the process noise and measurement noise are augmented into the

state (eq. 2.25) and covariance matrix (eq. 2.26), thereby increasing the number of

states and sigma points. By directly incorporating noise into the model, the process

noise matrix and measurement noise are not required as in the additive noise version.
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Algorithm 2.2 UKF with non-additive noise model (Van der Merwe et al., 2001)

Initialize x̂0 and P0

States variable and covariance matrix are augmented with noise.

x̂a0 =
[
x̂T0 0 0

]T
(2.25)

P a
0 =

P0 0 0
0 Q 0
0 0 R

 (2.26)

For all k, calculate sigma points, γ =
√
n+ λ

Xa
k−1 =

[
x̂ak−1 x̂ak−1 + γ

√
P a
k−1 x̂ak−1 − γ

√
P a
k−1

]
(2.27)

=
[
(Xx

k−1)T (XQ
k−1)T (XR

k−1)T
]T

(2.28)

Time-update step for each sigma point Xa
k−1(i), i = 0, ..., 2n

Xk(i)x− = F (Xx
k−1(i), uk−1, X

Q
k−1(i)) (2.29)

Recalculate norm and covariance of state variables

x̂−k =
2n∑
i=0

wm(i)Xx−
k (i) (2.30)

P−k =
2n∑
i=0

wc(i)
(
Xx−

k−1(i)− x̂−k
) (
Xx−

k (i)− x̂−k
)T

(2.31)

Measurement-update step for each sigma point

Zk(i) = H(Xx−
k (i), XR

k−1(i)) (2.32)

ẑ−k =
2n∑
i=0

wm(i)Zk(i) (2.33)

Pzz =
2n∑
i=0

wc(i)
(
Zk−1(i)− ẑ−k

) (
Zk(i)− ẑ−k

)T
(2.34)

Pxz =
2n∑
i=0

wc(i)
(
X−k−1(i)− x̂−k

) (
Zk(i)− ẑ−k

)T
(2.35)

K = Pxz · P−1
zz (2.36)

x̂k = x̂−k +K(z − ẑ−k ) (2.37)

Pk = P−k −KPzzK
T (2.38)
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2.3 Attitude Representations

Many mathematical representations can be used to define the attitude of a body

with respect to a reference frame. Each representation requires a different number of

parameters to describe an attitude and has different advantages and disadvantages.

First, the Direction Cosine Matrix (DCM) is a 3× 3 matrix in which each column

represents unit vectors in body axes projected along the reference axes. The DCM

requires 9 parameters, one for each element in the matrix. Since the DCM is also

a rotation matrix, all parameters also need to be satisfied for the rotation matrix

constraints: RT = R−1 and det(R) = 1. These constraints and the relatively high

number of parameters lead to difficulty in using the parameters directly in state

estimation, despite the fact that the DCM does not have any mathematical singularity

and the operations of DCMs are linear (Markley , 1978).

Second, Euler angles are successive transformations of one coordinate frame to

another defined by three successive rotations. The Euler angle requires only three

parameters as angles for each rotation. It is also possible to use Euler angles directly

in state estimation, though care must be taken that they do have a mathematical

singularity called the “gimbal lock” which is when the rotating axis of one rotation

aligns with the axis of another (Lefferts et al., 1982). This reduces the dimension

space of attitude representation to two, because two rotations in the same axis can

be considered one rotation.

Finally, the quaternion is a transformation of one coordinate to another through

the description of a single rotation about a vector defined in a reference frame. The

parameters of a quaternion are four numbers: three numbers to represent the vector

(ê) and one number to specify the angle of rotation (Φ).

13



q =

[
q1 q2 q3 q4

]T
(2.39)

q =



exsin(Φ/2)

eysin(Φ/2)

ezsin(Φ/2)

cos(Φ/2)


(2.40)

q =

êsin(Φ/2)

cos(Φ/2)

 (2.41)

Though the quaternion multiplication is bilinear (Gallier , 2011) and do not involve

a mathematical singularity, the quaternion still has to satisfy the constraint qT q = 1.

In some literature, the scalar part (cos(Φ/2)) is in the first element instead of in the

last as in the definition above, which may cause some confusion when it comes to

implementing the quaternion.

Due to its compactness and lack of singularity, the quaternion has been chosen to

be the attitude representation for the PDR system.

14



CHAPTER III

Filtering of a Pedestrian Dead-Reckoning System

3.1 Introduction

During the development of the Pedestrian Dead-Reckoning (PDR) system for

firefighter applications, we found that the position output had a large elevation error.

We mitigated this error by using a pair of barometric pressure sensors, one on the PDR

system and the other on a fixed base station. The elevation can be calculated from the

different atmospheric pressures between the two sensors. While this method works

very well in most situations, it cannot work reliably in firefighter application, because

the atmospheric pressure inside a burning building fluctuates highly due to the fire,

thus rendering this method unusable. Unable to enlist the help of barometric pressure

sensors, we decided to improve the performance of position estimation using inertial

sensors only. After investigation, we suspected that the elevation error might be a

result of attitude error. This can be observed in cases where a subject walks on a level

floor but the elevation output looks like they are walking uphill or downhill. Though

this kind of attitude error is small, it can significantly affect elevation estimation for

long walks.

This chapter describes the construction of attitude and position estimation using

the Unscented Kalman Filter (UKF) for the PDR application. This chapter will be

useful for those who are interested in developing a PDR system, as it is a summary
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Figure 3.1: A 3-dimensional trajectory output from the PDR system (top) of a subject
walking along a level rectangular path. Bottom figure shows elevation
error of the output as a function of walking distance.
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of all major steps needed.

This chapter is divided into two parts: attitude estimation and velocity/position

estimation. For attitude estimation, a gyroscope model is introduced and quaternion

attitude propagation steps are derived. Likewise, for velocity/position estimation,

the accelerometer model and velocity/position model are derived.

In addition, we have constructed a system model with two types of noise models

and included a discussion of measurements that can be used to the system. More-

over, the method of modeling actual sensor noise models is also introduced for the

preparation of working with actual experiment data, followed by a comparison of

characteristics of the two Inertial Measurement Units (IMUs) that were used. To-

wards the end of the chapter, experimental results from a large dataset are provided

and discussed.

The main contributions of this chapter are:

• A summary of methods for estimating attitude and velocity/position using mea-

surements from the IMU

• An analysis of attitude/position estimation in an Unscented Kalman Filter

(UKF) framework with various model complexities and noise models

• An evaluation of our experimental dataset that demonstrates the performance

of each implementation and their comparison

3.2 Prior work

There are several approaches to estimate the position of a person without the

use of a Global Positioning System (GPS). The most basic approach extends the

basic function of a pedometer by counting the number of steps taken together with

a constant pre-defined step length to calculate walking distance. Judd (1997) also

incorporates a digital compass for walking direction to calculate the 2D position of
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the subject. Since step length can vary with walking speed, Mezentsev et al. (2005)

assumed step length to be a random walk process. Weinberg (2002) and Randell et al.

(2003) tried to distinguish walking speed from acceleration measured and inferred

step length from estimated walking speed. Beauregard and Haas (2006), on the other

hand, used a neural network to estimate step length. These approaches all have

errors resulting from the simplification of step length, as well as directional error

from magnetometer disturbances.

More recently, since the development of inertial sensors such as gyroscopes and

accelerometers has become increasingly sophisticated and miniaturized, strap-down

inertial navigation has been adopted in many mobile devices. Some systems use off-

the-shelf inertial navigation systems such as Xsens MTi which offers a basic attitude

estimate (Beauregard , 2009; Jimenez et al., 2009). Other research systems implement

both attitude and position estimation algorithms using complimentary filters (Ojeda

and Borenstein, 2007a) or Extended Kalman Filter (EKF) (Foxlin, 2005). The closest

prior research to our work is Zampella et al. (2012), particularly in terms of their

use of UKF for the PDR application. Their work, however, utilizes Euler angles as

state variables while our work uses quaternions, which do not suffer from gimbal lock

(Section 2.3).

3.3 Attitude estimation

The attitude estimation in the current PDR system (Ojeda and Borenstein, 2007a)

uses a complementary filter and does not account for noise and bias drift from inertial

sensors. To improve attitude estimation, we developed a new estimation method with

a more detailed sensor model by expanding the framework described in Crassidis and

Markley (2003) and compared the performance against current PDR systems.
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3.3.1 Gyroscope model

A gyroscope can be used to measure a rotational rate around a sensitive axis.

There are several types of gyroscopes available with various performances and sizes

(Titterton and Weston, 2004). For the PDR system, MEMS gyroscopes were cho-

sen due to their compactness, which allowed installation in a boot. The measured

rotation rates from a 3-axis gyroscope, as a function of true rotation rate and sensor

imperfections, can be written as (Titterton and Weston, 2004):


ωx

ωy

ωz


m

=


1 + Sx Mxy Mxz

Myz 1 + Sy Myz

Mzx Mzy 1 + Sz



ωx

ωy

ωz


t

+


Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz



ax

ay

az

+


bx

by

bz


g

+


nx

ny

nz


(3.1)

ωm = S · ωt +M · ωt +G · a+ bg + nω (3.2)

where ωm is rate measurement from the sensor and ωt is true rotation rate. S repre-

sents the scale factor coefficients in each axis. M represents cross-coupling coefficients

and G represents sensitivity to linear acceleration a. The b’s are biases and nω are

measurement noises which are assumed to be zero-mean Gaussian noise N(0, σ2
ω).

The scale factor and cross-coupling coefficients are pre-calibrated from the factory,

and the sensitivity to linear acceleration coefficients can be calibrated when the PDR

is assembled. We use the measurement function below:

ωm ≡ ωt + bg + nω (3.3)

The gyro bias bg is assumed to be a random walk process:

ḃg = nbg (3.4)
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where nbg is assumed to be zero-mean Gaussian noise N(0, σ2
bg)

We will discuss in more detail regarding the parameterization of these sensor

imperfection variables in section 3.7.

3.3.2 Attitude propagation

The angular rates from gyroscopes can be integrated with respect to time to

compute current orientation. Since we are using quaternions as our attitude repre-

sentation, the integration has to be performed in quaternion space. By doing so,

the attitude error from conversion can be avoided by working directly in quaternion

space. From Trawny and Roumeliotis (2005), the differential quaternion is a function

of the current quaternion (qt) and angular rates in the body axis (ω):

q̇t =
1

2



0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0


qt (3.5)

q̇t =
1

2

−[ω×] ω

−ωT 0

 qt (3.6)

q̇t =
1

2
Ω(ω)qt (3.7)

where [ω×] is a skew-symmetry matrix that represents a cross product of a vector ω:

[ω×] =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (3.8)
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Since Ω(ω) does not change with time, this becomes an ordinary differential equation

with a solution of:

qt+∆t = exp

(
1

2
Ω(ω)∆t

)
qt (3.9)

Let Θ = exp
(

1
2
Ω(ω)∆t

)
and use of a Taylor series expansion yields:

Θ = I4×4 +
1

2
Ω(ω)∆t+

1

2!

(
1

2
Ω(ω)∆t

)2

+
1

3!

(
1

2
Ω(ω)∆t

)3

+ ... (3.10)

Θ = I4×4 +
1

2
Ω(ω)∆t+

1

2!

(
1

2
∆t

)2

Ω(ω)2 +
1

3!

(
1

2
∆t

)3

Ω(ω)3 + ... (3.11)

From inspection, we find that:

Θ(ω)2 = −‖ω‖2 · I4×4

Θ(ω)4 = ‖ω‖4 · I4×4

Θ(ω)3 = −‖ω‖2 · I4×4

Θ(ω)5 = ‖ω‖4 · I4×4

Substituting, expanding and reordering yields:

Θ =

(
1− 1

2!
(
1

2
‖ω‖∆t)2 +

1

4!
(
1

2
‖ω‖∆t)4 − ...

)
I4×4+

1

‖ω‖

(
1

2
‖ω‖∆t− 1

3!
(
1

2
‖ω‖∆t)3 +

1

5!
(
1

2
‖ω‖∆t)5 − ...

)
Ω(ω) (3.12)

We can recognize that the two infinite series are Taylor series expansions of the

cosine and sine functions:

Θ = cos

(
1

2
‖ω‖∆t

)
I4×4 +

1

‖ω‖
sin

(
1

2
‖ω‖∆t

)
Ω(ω) (3.13)

Thus, the new attitude can be propagated from the angular rate input as:

qt+∆t =

(
cos

(
1

2
‖ω‖∆t

)
I4×4 +

1

‖ω‖
sin

(
1

2
‖ω‖∆t

)
Ω(ω)

)
qt (3.14)
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It is important to note that care must be taken here, as the above equation is

numerical unstable for small angular rates (‖ω‖ → 0). We can compute a limit of the

above equation in the limit as ‖ω‖ → 0 as:

qt+∆t =

(
I4×4 +

∆t

2
Ω(ω)

)
qt (3.15)

Moreover, the resultant quaternion may need to be normalized to make sure that

it satisfies the qT q = 1 constraint.

3.4 Velocity/Position estimation

In addition to attitude estimation, described above, we must estimate the current

velocity and position. Acceleration data from the accelerometer can be transformed

into the navigation frame and the gravity vector subtracted out. The velocity can be

calculated by integrating the resulting acceleration with respect to time. Similarly,

position can also be obtained by integrating with the velocity.

3.4.1 Accelerometer model

An accelerometer measures linear acceleration along its sensitive axis. Similar

to gyroscopes, measurements are also corrupted with noise, biases and other non-

idealities (Titterton and Weston, 2004). The measurement model of a 3-axis ac-

celerometer can be written as:


ax

ay

az


m

=


1 + Sx Mxy Mxz

Myz 1 + Sy Myz

Mzx Mzy 1 + Sz



ax

ay

az


t

+


bx

by

bz


a

+


nx

ny

nz


a

(3.16)

am = S · at +M · at + ba + na (3.17)
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where am is acceleration measured from the sensor while subjecting to true acceler-

ation at. The S and M are scale-factor and cross-coupling coefficients, respectively.

The sensor’s bias ba and noise na are also included in the model.

3.4.2 Velocity integration model

Using acceleration measurements together with current attitude, the current ve-

locity v and position p can be calculated as:

v̇ = C(q̄)(am − ba − na)− g0 (3.18)

ṗ = v (3.19)

ḃa = nba (3.20)

the expected value of the above equations are:

˙̂v = C(q̂)(am − b̂a)− g0 (3.21)

˙̂p = v̂ (3.22)

˙̂
ba = 0 (3.23)

where C(q̂) is the Direction Cosine Matrix (DCM) of the estimated attitude q̂ and am

is the acceleration from the accelerometer and its estimated bias b̂a. We assume that

na and nba are zero-mean Gaussian with variance σ2
a and σ2

ba, respectively. Gravity

vector g0 = [0, 0, 9.81]T [m/s2] is the earth gravity vector pointed vertically downward.

From the above equations (3.18),(3.19),(3.20), we can see that the acceleration

has to be integrated twice to calculate position. This integration accumulates noise,

resulting in an exponential increase in the position error.
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3.5 System model

In this section, we construct a system model using the UKF framework. First, we

describe choices of attitude error representation.

3.5.1 Attitude error

Using one redundant parameter, quaternions represent any rotational motion

without any singularity or discontinuity. Indeed, some works (Lefferts et al., 1982)

use the quaternion directly as the state variables. This approach, however, cannot

guarantee that the resultant quaternion satisfies qT q = 1. Moreover, this may lead to

singularity in the covariance matrix due to the fact that the states are rank deficient.

To prevent this problem, the quaternion, which has 4 scalars, has to be reduced

to 3. There are several methods of transforming a quaternion into a 3-parameter rep-

resentation of the attitude. Each method utilizes different geometric interpretations

and has different singular behavior at different orientations.

In many works, the state representation of attitude is written in the form of atti-

tude error instead of the attitude itself. The attitude error has an advantage in that

it represents smaller rotation and can be more easily approximated and linearized.

!
!
!
!

!!!

!!!
!!!

Figure 3.2: Relationship between the true attitude q̄, estimated attitude q̂ and atti-
tude error δq in a simplified 2d rotation.
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From Figure 3.2, we can define the attitude error as:

q̄ = δq ⊗ q̂ (3.24)

δq = q̄ ⊗ q̂−1 (3.25)

where ⊗ represents quaternion multiplication.

Above, we can see that the true attitude q̄ can be calculated using estimated

attitude q̂ and estimated attitude error δq. The attitude error is assumed to be small.

There are several ways to incorporate the attitude error as a system state. In the

following sections, we discuss small angle approximation and a family of Rodrigues

parameters: classical, modified, and generalized Rodrigues parameters.

3.5.1.1 Small angle approximation

In Lefferts et al. (1982) and Trawny and Roumeliotis (2005), since the error is

assumed to be small, the attitude error can be linearized using a small angle approx-

imation as follows:

δq =

êsin(δΦ/2)

cos(δΦ/2)

 ≈
1

2
δΦ

1

 (3.26)

Using this approximation, the attitude error reduces to an error angle vector δΦ

of size 3× 1. Thus, the state variables for attitude estimation are defined as:

δp = 2 · [δq0, δq1, δq2]T (3.27)

This method works well in many cases. For large attitude error, however, the

estimation may suffer from a non-unit-length quaternion which can lead to divergence

of the attitude estimation. This problem is likely to occur when the initial attitude is

much different than the actual attitude. To alleviate this problem, the initial attitude
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can be initialized using the accelerometer’s measurement of the gravity vector.

3.5.1.2 Classical Rodrigues Parameters (CRP)

Another method is to project a quaternion (which falls on a 4 dimensional unit

sphere) onto a 3 dimensional hyperplane (Schaub and Junkins , 1996; Markley , 2003).

There are different types of projections depending on the geometry of the projection.

The transformation of quaternion parameters (q) into Classical Rodrigues param-

eters (p) uses a gnomonic projection—using a projection point at the origin to project

parameters onto a hyperplane q4 = 1. The transformation is:

pi =
qi
q4

i = 1, 2, 3 (3.28)

The inverse transformation from the Rodrigues parameters p back to quaternions

q must satisfy the qT q = 1 constraint. This transformation is:

qi =
pi√

1 + pTp
i = 1, 2, 3 (3.29)

q4 =
1√

1 + pTp
(3.30)

Using the definition of the quaternion, the Rodrigues parameters can be expressed

directly in term of rotation angle Φ and the rotation axis ê

p = ê · tanΦ

2
(3.31)

From above, it is obvious that the classical Rodrigues parameters have a singu-

larity at ±180◦. Moreover, the linearized equation assuming that Φ is small is equal

to half the angle of rotation.

p ≈ ê · Φ

2
(3.32)
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q

q

-q

p

q4

S3

Figure 3.3: Gnomonic projection of classical Rodrigues parameters. A quaternion q
can be projected using the origin as a projection point onto a hyperplane
q4 = 1. The result is a classical Rodrigues parameter p.

3.5.1.3 Modified Rodrigues Parameters (MRP)

The modified Rodrigues projection (Schaub and Junkins , 1996; Crassidis and

Markiey , 1996; Markley , 2003) moves the projection point to the bottom of the unit

sphere q4 = −1 and projects parameters onto a hyperplane at q4 = 0:

pi =
qi

1 + q4

i = 1, 2, 3 (3.33)

The inverse transformation is:

qi =
2pi√

1 + pTp
i = 1, 2, 3 (3.34)

q4 =
1− pTp√
1 + pTp

(3.35)

Similarly, the Rodrigues parameters can be expressed directly in terms of rotation

angle Φ and the rotation axis ê:

p = ê · tan
Φ

4
(3.36)
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q

q

-q

p

q4

S3

Figure 3.4: Projection of modified Rodrigues parameters. A quaternion q can be
projected using a projection point q4 = −1 onto a hyperplane q4 = 0.
The result is a modified Rodrigues parameter p.

The transformation has singularities at Φ = ±360◦, twice the range of the classical

Rodrigues parameters. Moreover, the limits Φ = ±360◦ can be wrapped to Φ = 0

which does not have singularity.

3.5.1.4 Generalized Rodrigues Parameters (GRP)

In Crassidis and Markley (2003), the generalized Rodrigues parameter is further

generalized using a projection point q4 = −a, where a ∈ [0, 1], and scaling of the

projected parameters f . The transformation can be described as:

pi = f · qi
a+ q4

i = 1, 2, 3 (3.37)

We can see that classical (a = 0 and f = 1) and modified Rodrigues parameter

(a = 1 and f = 1) are special cases of the Generalized Rodrigues Parameters. In

Crassidis and Markley (2003), the parameter f is set to f = 2(a+ 1) and a = 1, the
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linearized transformation of a small rotation is:

p = 2ê(a+ 1)
sin(Φ

2
)

a+ cos(Φ
2
)

(3.38)

p ≈ ê · Φ (3.39)

The inverse transformation from p back to q is given by:

q4 =
−a · pTp+ f

√
f 2 + (1− a2)pTp

f 2 + pTp
(3.40)

qi = f−1(a+ q4)pi i = 1, 2, 3 (3.41)

This generalized Rodrigues Parameters have the same advantages as the MRP

with an option to be able to control the scale of the state variables.

In this project, we will compare performances of each representation. To this end,

we use UKF implementation of the generalized Rodrigues Parameters model, which

can be configured to be equivalent to MRP or CRP according to parameter a and f .

3.5.2 State variables

We define state variables of the system as:

x =



δp

bg

ba

v

p



projected attitude error

gyroscope biases

accelerometer biases

velocity

position

(3.42)

29



3.5.3 Non-additive noise model

The system model with non-additive noise can be written as:

xk = f(xk−1, uk−1, wk) (3.43)

ỹk = h(xk, vk) (3.44)

From above system model, we can see that both process noise wk and mea-

surement noise vk are directly integrated into the non-linear time update equation

f(xk−1, uk−1, wk) and measurement equation h(xk, vk).

As described in Algorithm 2.2, a time-update model is shown in equation (2.29)

which has sigma points input Xa
k−1(i), i = 0, ..., 2n and produces state prediction at

the next time-step Xk(i)x−.

Xk+1(i)x− = F (Xx
k (i), uk, X

Q
k (i))

where uk = [ωm,k, am,k]T are gyroscope and accelerometer inputs.

XQ
k (i) = [nω(i), nbg(i), nba(i), na(i)]

T is a sigma point of the process noise which

has variance of σ2
ω,d, σ

2
bg,d, σ

2
ba,d, σ

2
a,d, respectively (section 3.3.1 and 3.4.2). In this

method, we need to use a discrete version of noise which incorporates sampling time.

σ2
ω,d =

σ2
ω,c

∆t
(3.45)

σ2
bg,d = σ2

bg,c∆t (3.46)

σ2
ba,d = σ2

ba,c∆t (3.47)

σ2
a,d =

σ2
a,c

∆t
(3.48)

By adapting from the procedure in Crassidis and Markley (2003), the time-update

model can be described in the following steps:
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1. Calculate attitude error of the ith sigma point,

δq(i) = [δq1(i), δq2(i), δq3(i), δq4(i)]T from δp(i) using equation (3.40) and (3.41):

δq4(i) =
−a · δp(i)T δp(i) + f

√
f 2 + (1− a2)δp(i)T δp(i)

f 2 + δp(i)T δp(i)
(3.49)

δqi(i) = f−1(a+ δq4(i))δp(i)i i = 1, 2, 3 (3.50)

2. Using current attitude estimate q̂k, calculate the attitude estimate of each sigma

point using equation (3.24):

q̂k(i) = δq(i)⊗ q̂k (3.51)

3. Propagate the attitude estimate of each sigma point in the above to the next

time-step using equation (3.14):

ω̂k(i) = ωm − bg(i)− nω(i) (3.52)

q̂k+1(i) =

(
cos

(
1

2
‖ω̂k(i)‖∆t

)
I +

1

‖ω̂k(i)‖
sin

(
1

2
‖ω̂k(i)‖∆t

)
Ω(ω̂k(i))

)
q̂k(i)

(3.53)

q̂k+1 = q̂k+1(0) (3.54)

4. Project the attitude estimates back to state variables δp(i) using equation (3.37):

δpk+1(0) = 0 (3.55)

δpj,k+1(i) = f · q̂j,k+1

a+ q̂4,k+1

j = 1, 2, 3 (3.56)

In summary, the attitude propagation and projection can be described as in

Figure 3.5
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Figure 3.5: Attitude state propagation steps. δp is projected attitude error, δq is
quaternion attitude error and q̂ is estimated attitude.

5. Finally, since the attitude has been propagated, we can propagate other state

variables to the next time-step:

bg,k+1(i) = bg,k(i) + nbg(i) (3.57)

ba,k+1(i) = ba,k(i) + nba(i) (3.58)

vk+1(i) = vk(i) + (C(q̂k(i))(am − ba,k(i))− g0) ∆t (3.59)

pk+1(i) = pk(i) + vk(i)∆t (3.60)

The UKF non-additive model has the advantage of incorporating noise directly

into the system model and avoiding linearization. This does, however, significantly

increase the number of required sigma points. For a system with n states, m process

noise inputs and o measurement noise inputs, the total number of required sigma

points is 2(n + m + o) + 1, compared to 2n + 1 in the case of the additive noise

model. Since the process of generating sigma points has computational complexity

of O(n3) (Section 2.2), the larger number of sigma points will require substantially

more computational time.
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3.5.4 Additive noise model

To reduce the number of sigma points, we can linearize the noise model out of the

system model and assume it to be additive:

xk = f(xk−1, uk−1) +Gkwk (3.61)

ỹk = h(xk) + vk (3.62)

where wk and vk are zero-mean Gaussian noise with covariance Qk and Rk, respec-

tively.

For state propagation, the procedure of modeling the noise as additive is very sim-

ilar to the non-additive version; however, the additive noise model does not consider

noise inputs in the propagation step since it is processed separately.

Our focus now turns to the process noise covariance Qk, which is a linearized

version of the noise in the system model. To find Qk, we need the linearized system

equation.

3.5.4.1 Linearized state equation

In this section, we will construct a state equation for attitude estimation as de-

scribed in the previous sections. This linearized state equation will be used to derive

process noise covariance Q.

Using equation (3.3) and (3.4) and (3.7), the continuous-time state equation can

be written as:

˙̄q =
1

2
Ω(ωm − bg − nω)q̄ (3.63)

ḃg = nbg (3.64)
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The expected value of the state equations are:

˙̂q =
1

2
Ω(ωm − b̂g)q̂ (3.65)

=
1

2
Ω(ω̂)q̂ (3.66)

˙̂
bg = 0 (3.67)

As described in Section 3.5.1, we need to rewrite the equation as a function of

attitude error δq instead of the actual attitude q. Using equation (3.24), one obtains:

q̄ = δq ⊗ q̂

˙̄q = δq̇ ⊗ q̂ + δq ⊗ ˙̂q (3.68)

using equation (3.6), (3.63) and (3.65), solving for δq̇ yields:

δq̇ =

−[ω̂×]δq − 1
2
(bg + nω)

0

 (3.69)

As our state variable for attitude is δp, we need to project the 4 dimensional

quaternion error δq to 3 parameters variable δp. By using equation (3.39), δp is

approximated to be:

δp ≈ 2 [δq1, δq2, δq3]T (3.70)

Thus, the linearized equation for the attitude becomes:

δṗ = −[ω̂×]δp− bg − nω (3.71)
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Likewise, the state equation for velocity is described in equation (3.18) and (3.21):

v̇ = C(q̄)(am − ba − na)− g0 (3.72)

˙̂v = C(q̂)(am − b̂a)− g0 (3.73)

For small attitude error, its DCM can be approximated as:

C(δq) ≈ I − [δp×] (3.74)

After significant algebraic operations, the acceleration error δv̇ = v̇ − ˙̂v can be

written as:

δv̇ = [C(q̂)(am − ba)×]δp− C(q̂)ba − [I − [δp×]]C(q̂)na (3.75)

δv̇ ≈ [C(q̂)(am − ba)×]δp− C(q̂)ba − C(q̂)na (3.76)

35



Thus, the linear continuous-time error state equation becomes:

δẋ = F · δx+G · w (3.77)

δṗ

δḃg

δḃa

δv̇

δṗ


=



−[ω̂×] −I 0 0 0

0 0 0 0 0

0 0 0 0 0

[C(q̂(am − ba)×] 0 −C(q̂) 0 0

0 0 0 I 0





δp

δbg

δba

δv

δp



+



−I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 −C(q̂)

0 0 0 0





nω

nbg

nba

na


(3.78)

Using a Taylor series expansion, the approximate discrete time state transition

matrix F can be obtained as:

Fd ≈ I + F∆t+
1

2!
F 2∆t2 + .... (3.79)

Fd ≈



I −∆t[ω̂×] −∆t 0 0 0

0 I 0 0 0

0 0 I 0 0

∆t[C(q̂(am − ba)×] 0 −∆tC(q̂) I 0

0 0 0 ∆t I


(3.80)
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3.5.4.2 Process noise covariance

The discrete process noise covariance matrix can be calculated using:

Qd =

tk+1∫
tk

Fd ·G ·Qc ·GT · F T
d dτ (3.81)

where

Qc =



σ2
ω,cI 0 0 0

0 σ2
bg,cI 0 0

0 0 σ2
ba,cI 0

0 0 0 σ2
a,cI


(3.82)

The result Qd is shown in equation (3.84). In our realtime implementation of the

algorithm, we split up the Qd matrix into a constant part and time-varying part.

Using this technique, only a few elements of the matrix are updated at every time-

step, therefore speeding up the calculation.
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3.6 Sensor measurement model

In order to provide additional information to the system, we can directly imple-

ment additional sensors or even exploit indirect information from the nature of the

human walking cycle. Each measurement brings different information to the system

at a different phase of walking and for different operating conditions. The follow-

ing sections are a non-exhaustive list of measurement types that we use in the PDR

system.

3.6.1 Zero Velocity Update (ZUPT)

Ayyappa (1997) described the human gait cycle as consisting of “stance” and

“swing” phases. According to the study, the majority of the gait cycle is stance

phase, which is 62% of the total gait time, while the swing phase makes up the

remaining 38%.

Normal Human Locomotion, Part 1 : Basic Concepts and Terminology

congruently to transport the passenger
unit—head, arms and trunk (HAT).
The lower extremities and pelvis, which
carry the HAT, are referred to as the lo-
comotor apparatus.

The gait cycle is the period of time
between any two identical events in the
walking cycle. Any event could be se-
lected as the onset of the gait cycle be-
cause the various events follow each
other continuously and smoothly. Ini-
tial contact, however, generally has
been selected as the starting and com-
pleting event.

By contrast, the gait stride is the dis-
tance from initial contact of one foot to
the following initial contact of the same

. foot.
Each gait cycle is divided into two

periods, stance and swing. Stance is the
time when the foot is in contact with
the ground, constituting 62 percent of
the gait cycle. Swing denotes the time
when the foot is in the air, constituting
the remaining 38 percent of the gait cy-
cle. In those cases where the foot never
leaves the ground, sometimes referred
to as foot drag, the swing phase could
be defined as the phase when all por-
tions of the foot are in forward motion.

Double support is the period of time
when both feet are in contact with the
ground. This occurs twice in the gait cy-
cle—at the beginning and end of stance
phase—and also is referred to as initial
and terminal double-limb stance (see
Figure 2). As velocity increases, double-
limb support time decreases. Running
constitutes forward movement with no
period of double-limb support.

In normal walking, initial double-
limb support takes up about 12 percent
of the gait cycle, and terminal double-
limb support occupies 12 percent as
well. Generally, the two periods of dou-
ble-limb support represent 25 percent
of the gait cycle.

Single support is the period of time
when only one foot is in contact with
the ground. In walking, this is equal to
the swing phase of the other limb. The
term ipsilateral is used to describe the
same side of the body, and the term con-
tralateral is used to describe the oppo-
site side of the body or the opposite

AAM»RKSH*

Cut A 1. Cut A 2. Cut A 3. Cut A 4.

Cut A 5. Cut A 7. Cut A 8.

Figure 1. Marks described the walking process in eight organized phases and discussed
the relationship between prosthetic design and gait function.
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Figure 2. The gait cycle is comprised of 62-percent stance phase and 38-percent swing
phase with two periods of double-limb support that occupy a total of 25 percent of the
gait cycle.

JPO: Journal ofProsthetics and Orthotics/Volume 9, Number I/Winter 1997 11

Figure 3.6: Human gait cycle (Ayyappa, 1997)

Ojeda and Borenstein (2007a) exploit the fact that, at the stance phase, the

relative velocity between the foot and ground is zero unless the sole is slipping on

the ground. This way, we can safely assume (to some extent) that the velocity of the
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sensor during the so-called “footfall” is zero. This method of compensating for drift

is called Zero Velocity Update (ZUPT):

v = nv (3.85)

where nv is a zero-mean Gaussian noise representing the uncertainty that the velocity

is actually zero. In some implementations, such as in Foxlin (2005), the variance of nv

is equal to the trace of the velocity covariance sub-matrix. For our implementation,

we set the variance of nv to be the maximum of the diagonal component of the velocity

covariance sub-matrix. These modifications are designed to gradually make correc-

tions with increasing confidence, which would prevent measurement overconfidence

in the case of false step-detection.

There are several methods to detect the footfall duration and apply ZUPT. One

way is to distinguish stance period from the raw measurement using heuristics (Ojeda

and Borenstein, 2007a; Jimenez et al., 2009). Another uses a neural network (Beau-

regard and Haas , 2006) to learn parameters from a training set.

To achieve the highest performance using the ZUPT technique, there are still some

challenges in implementing a robust step detection approach that produces fewer

false-positive detections and works with a variety of walking styles on all subjects.

3.6.2 Zero Attitude Rate Update (ZARU)

Some research such as Foxlin (2005) and Beauregard (2009) describe a method to

assume zero attitude rate during stand still. This can be an explicit instruction for the

subject to stand still during the system start-up or else an implicit detection during

the still period later applied as an update in the background (Ojeda and Borenstein,
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2007a). From equation (3.3), the true rate is assumed to be zero ωt = 0:

ωm = bg + nω (3.86)

In our experience, we found that this method is not suitable to be applied at every

footfall. Though the foot has zero-velocity during footfall, it is still rolling from the

fact that the heel is rising up in preparing the foot to swing forward. Therefore, there

is, in fact, a small rotation during the stance period – rendering the zero rotation

assumption invalid.

3.6.3 Magnetometer assisted

For outdoor applications, an additional sensor can be added to measure magnetic

heading. In Chapter IV, we augment the PDR system with a 3-axis magnetometer

to measure magnetic heading. The magnetic heading measurement can be written

as a function of the yaw angle of the current attitude yaw(q̄) and noise in magnetic

heading measurement nΨ.

Ψmag = yaw(q̄) + nΨ (3.87)

By augmenting the system with absolute heading angle measurement, the gyro

drift in the Z direction can be eliminated. This improves heading error substantially

over the original PDR system. In Chapter IV, we conclude that this method can

reduce the position error to less than 1.9% of distance travelled using a Memsense

nIMU.

3.6.4 Artificial constraints

In many applications where the operating area is in a structured environment, we

can feed artificial constraints to the filter. For example, we can assume the floors in a
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given building to be flat. In this scenario, if the change in elevation between two steps

is smaller than a threshold, we can make a observation that the elevation change is

zero. This method has to be used with care to make sure that the assumptions hold

true for the actual environment.

3.7 Parameterization of the sensor model

In this section, we describe methods of parameterizing sensor models for two types

of IMU: Navchip and an older Memsense nIMU. The results of this section also show

a performance comparison between the two IMU’s technologies. The first part is to

determine the sensitivity to the linear acceleration matrix which is described in the

gyroscope model in Section 3.3.1.

3.7.1 Sensitivity to linear acceleration of gyroscopes

To begin, each IMU is mounted on a programable two degree-of-freedom tilt ta-

ble. By varying roll and pitch angle, the IMU is subjected to various magnitudes of

acceleration. We can then take a measurement of angular rates from the gyroscope

to find the sensitivity to linear acceleration of each axis of the gyroscope.

From equation (3.2) , the rate measurement of a stationary 3-axis gyroscope can

be written as:

ωm = Ĝ · am + b̂g (3.88)

The rate ωm and acceleration am can be measured directly from the sensor. Con-

sequently, the sensitivity to linear acceleration matrix Ĝ and gyro biases bg can be

estimated using linear regression.

The examples of the sensitivity to linear acceleration (deg/sec per m/s2) of two

types of IMU were found to be:
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Navchip:

G =


−0.00042816 −0.00037100 0.00040087

0.00049081 −0.00053108 −7.12798797e−06

−2.22648666e−05 −0.00068323 −0.00013779


Memsense nIMU:

G =


0.00120899 0.01491520 −0.00206642

−0.01444794 0.00500313 0.00215838

0.00433347 −0.01415647 0.01042075


From the above numbers it is possible to conclude that, overall, the Navchip IMU

is generally less sensitive to acceleration than the older Memsense nIMU sensor.

3.7.2 Sensor noise model

As with all measurements, the output of the gyroscope and accelerometer in the

PDR system can be corrupted by noise and bias drift. To characterize this, we utilized

a standard methodology called “Allan variance” or “Allan deviation” which was first

described in Allan and Leschiutta (1974).

A more specific application of the Allan variance methodology to the gyroscope

and accelerometer can be found in El-Sheimy et al. (2008); Petkov and Slavov (2010).

For completeness, we show here the definition of this method.

Assume that we have N consecutive samples Ω(t), and divide them into n groups
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of consecutive samples. The Allan variance σ2(T ) of length T is defined as:

Ω̄k(T ) =
1

T

tk+T∫
tk

Ω(t)dt (3.89)

Ω̄next(T ) =
1

T

tk+1+T∫
tk+1

Ω(t)dt (3.90)

σ2(T ) =
1

2(N − 2n)

N−2n∑
k=1

[
Ω̄next(T )− Ω̄k(T )

]2
(3.91)

The novelty of the Allan variance is that when plotted against length T , it de-

composes different types of noise into different regions of the log-log plot.

1. Angle/Velocity random walk

Angle/Velocity is an angular/velocity error process which is due to white noise

in angular rate/acceleration. Angle/Velocity random walk is where the slope

is equal to −1/2. The numerical value of noise coefficient can be directly read

where the graph crosses T = 1.

2. Bias instability

The bias instability indicates how stable the bias is over the period of time.

The value of the bias instability coefficient can be found at the minimum of the

constant part of the graph.

Figure 3.7 shows Allan variance plots of all gyroscopes inside the Navchip and

Memsense IMUs. The angle random walk and bias instability coefficients are sum-

marized in Table 3.1.

Similarly, Figure 3.8 shows Allan variance of all accelerometers and Table 3.2

shows the numerical value of the coefficients.

We found that the Navchip has an order of magnitude lower random walk and

bias stability than the Memsense nIMU.
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Figure 3.7: Allan variance plot of two gyroscopes: Navchip (red) and Memsense nIMU
(blue). The Navchip has lower noise than the older Memsense nIMU.

Angle random walk
(◦/s/

√
s)

Bias instability
(◦/s)

Memsense nIMU
X 0.0458 0.0140 @38 sec
Y 0.0452 0.0143 @38 sec
Z 0.0446 0.0142 @38 sec

Navchip
X 0.0036 0.0034 @2 sec
Y 0.0037 0.0035 @2 sec
Z 0.0039 0.0036 @2 sec

Table 3.1: Angle random walk and bias instability of Navchip and Memsense nIMU’s
gyroscopes.
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Figure 3.8: Allan variance plot of two accelerometers: Navchip (red) and Memsense
nIMU (blue). The Navchip has lower noise compared to the Memsense
nIMU.

Velocity random walk
(m/s2/

√
s)

Bias instability
(◦/s)

Memsense nIMU
X 0.00278 0.00157 @ 9 sec
Y 0.00320 0.00186 @ 8 sec
Z 0.00301 0.00197 @ 8 sec

Navchip
X 0.00046 0.00019 @22 sec
Y 0.00043 0.00021 @22 sec
Z 0.00045 0.00019 @22 sec

Table 3.2: Velocity random walk and bias instability of Navchip and Memsense
nIMU’s accelerometers.
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3.8 Experimental results

In this section, we evaluate the performance of the UKF implementation by testing

them against a baseline original and a widely used EKF algorithm. We use our PDR

dataset which consists of 130 experiments conducted by several subjects walking and

crawling inside buildings. The dataset contains several experiments of a subject

walking in indoor environments. Some of the experiments include both walking and

crawling, making these datasets useful for evaluating performance of the PDR system

in a variety of settings.

3.8.1 UKF, EKF and original PDR system

Since the original PDR system does not consider any sensor biases, we define state

variables of the system as a 9-state version in this test, as follows:

x =


δp

v

p


projected attitude error

velocity

position

(3.92)

The average of position error per distance travelled from 130 experiments is shown

in the Table (3.3). We can see that all three algorithms perform comparably (within

confidence interval) for horizontal error. On the other hand, for elevation error, EKF

and UKF perform significantly better than the original system. The performance of

the UKF and EKF are similar in elevation performance.

Elevation error
per distance travelled (%)

Horizontal error
per distance travelled (%)

mean 95% confidence interval mean 95% confidence interval
Original 3.964 ±0.6879 2.551 ±1.198

EKF9 2.367 ±0.4603 2.430 ±1.162
UKF9 2.289 ±0.4067 3.281 ±1.287

Table 3.3: Performance of original system versus EKF and UKF implementation.
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3.8.2 Model complexity

We now consider the effect of model complexity on performance. We define 9, 12

and 15 state versions of the system model with increasing complexity, as follows:

x9 =



δp

−

−

v

p


, x12 =



δp

bg

−

v

p


, x15 =



δp

bg

ba

v

p



projected attitude error

gyroscope biases

accelerometer biases

velocity

position

(3.93)

Table 3.4 shows the performance of each model. For elevation error, both UKF12

and UKF15 perform best considering uncertainty; however, UKF12 has larger hori-

zontal error in comparision to UKF15. Specifically, the UKF15 model has an average

elevation error 63% less than the original system. An example of the position output

of original system and UKF15 is shown in Figure 3.12.

Elevation error
per distance travelled (%)

Horizontal error
per distance travelled (%)

mean 95% confidence interval mean 95% confidence interval
UKF9 2.289 ±0.4067 3.281 ±1.287

UKF12 1.522 ±0.2172 4.400 ±1.028
UKF15 1.448 ±0.2874 2.558 ±1.121

Table 3.4: Performance of UKF implementation with various model complexity.

3.8.3 Additive vs. Non-additive model

We also test the UKF 15-state version with additive (UKF15) and non-additive

(UKF15NA) noise model as described in Sections 3.5.3 and 3.5.4.

As shown in Table 3.5, both additive and non-additive noise model perform vir-

tually identically. Thus, we are able to conclude that the linearization of the noise

model does not affect the performance of the system.
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Elevation error
per distance travelled (%)

Horizontal error
per distance travelled (%)

mean 95% confidence interval mean 95% confidence interval
UKF15 1.448 ±0.2874 2.558 ±1.121

UKF15NA 1.440 ±0.2867 2.548 ±1.121

Table 3.5: Performance of UKF implementation with additive and non-additive noise
model.

3.8.4 Flat-floor assumption

As described in Section 3.6.4, we assumed that all the floors our subjects walked

on were flat. This assumption exploited as follows: if the change in elevation from

one step to the next is less than a threshold (also within the uncertainty), a dummy

measurement of elevation is created and set equal to the elevation of the previous

step.

Elevation error
per distance travelled (%)

Horizontal error
per distance travelled (%)

mean 95% confidence interval mean 95% confidence interval
UKF15 1.448 ±0.2874 2.558 ±1.121

UKF15FF 0.906 ±0.2286 2.440 ±1.112

Table 3.6: Performance of UKF implementation with flat-floor assumption.

Table 3.6 clearly indicates that the UKF15FF has the lowest rate of elevation error,

though there is also no improvement in horizontal error.This flat-floor assumption is

not always valid; this experiment is only intended to show what performance gains

are possible.

In summary, a comparison of elevation and horizontal error between all imple-

mentations are shown in Figure 3.9 and Figure 3.10.
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Figure 3.9: Average elevation error per distance travelled of various implementations.
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Figure 3.10: Average horizontal error per distance travelled of various implementa-
tions.

3.8.5 Runtime comparison

As the complexity of the models increased, the computational complexity also

increased as well. In this experiment, we compared the computational time of each
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model with the original algorithm as the baseline.

Computational time (times of original system)
mean 95% confidence interval

Original 1 -
EKF9 1.359 0.008361
UKF9 1.835 0.01641

UKF12 2.027 0.01576
UKF15 2.194 0.01429

UKF15NA 3.478 0.02806
UKF15FF 2.235 0.01710

Table 3.7: Relative runtime of various implementations comparing to original system.

From Table 3.7, we can see that the required runtime increases with model com-

plexity. For the same number of states, the UKF is slower than EKF. Moreover, the

non-additive noise model (UKF15NA) is much slower than additive noise (UKF15).

0" 0.5" 1" 1.5" 2" 2.5" 3" 3.5" 4"

UKF15FF"

UKF15NA"

UKF15"

UKF12"

UKF9"

EKF9"

Org"

Run$me'comparison'

Figure 3.11: Relative runtime of various implementations comparing to original sys-
tem.
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3.9 Conclusion

In this chapter, we evaluated the performance limitations of the current PDR

system. Without any correction from other sensors, this system accumulates large

elevation errors, which we attribute to attitude error. To address this, we proposed

an upgrade to the estimation algorithm, using the Unscented Kalman Filter (UKF).

We described our gyroscope model, accelerometer model, velocity/position model and

deriving the necessary propagation steps. Finally, we parameterized two IMUs and

compared their characteristics.

We also conducted tests of various implementation against our dataset of 130 ex-

periments. We found that the EKF and UKF perform significantly better than the

original system. By increasing model complexity, the elevation error is reduced while

computational time is increased. We also found that both non-additive and addi-

tive noise models perform similarly well; however, the non-additive is much slower.

The best performance method overall was shown to be the UKF15, which can re-

duce elevation error by as much as 63% compared to the original system. Finally,

we demonstrated an example of introducing artificial constraints, such as flat-floor

assumption, to the system and the resulting reduction in elevation error.

52



−10
0

10
20

30
40

−30

−20

−10

0

10
−12

−10

−8

−6

−4

−2

0

2

 

x(m)y(m)
 

z(
m

)

Original
UKF15
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CHAPTER IV

Magnetometer-Enhanced Personal Locator for

Tunnels and GPS-Denied Outdoor Environments

4.1 Introduction

This chapter describes a system for estimating the position of walking persons in

outdoor or underground environments in which a Global Positioning System (GPS)

is not available and magnetic disturbances are few. The system is comprised of our

earlier-developed Pedestrian Dead-Reckoning (PDR) system and a magnetometer-

based software module which is fully discussed in Ojeda and Borenstein (2007a,b);

Borenstein et al. (2009). For completeness, we provide a brief description of this

module in Section 2.1.

The PDR system uses a foot-mounted Inertial Measurement Unit (IMU), which

includes a three-axis gyroscope, a three-axis accelerometer, and a three-axis magne-

tometer. In our earlier work, we used only gyroscopes and accelerometers for position

estimates and developed a method for correcting accelerometer drift that exploited

the fact that an instrumented human foot briefly experiences zero velocity during

each footfall. In addition, we developed a heuristic method for correcting heading

errors caused by drift and other physical phenomena in the gyroscopes (Borenstein

et al., 2009). This heuristic method exploits the rectilinear features in man-made
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structures. However, this method is useful only inside buildings that have rectilinear

features.

4.2 Prior work

For most outdoor environments, GPS is the most accurate and cheapest solution

(Hofmann-Wellenhof et al., 1994) for all but the shortest of walks. For many military

applications, however, it is desirable not to rely on GPS. In other applications,

too, GPS may be unreliable due to occlusion (e.g., under dense tree canopies or in

canyons). Moreover, in tunnels and caves, GPS is altogether unavailable. Local GPS-

like beacons (also called pseudolites) can provide centimeter-accuracy over areas of

several square miles, but the pseudolites have to be preinstalled before a mission and

even they do not penetrate well into structures (Cobb, 1997).

Unlike gyros, which estimate relative changes in heading, the magnetometer is a

sensor modality with the ability to estimate absolute heading. The earth’s magnetic

properties have been known and used in compasses for navigation for hundreds of

years. Modern electronic magnetometers are used extensively in aviation and wa-

tercraft for measuring heading with respect to Earth’s magnetic north. However,

magnetometers can be affected by magnetic disturbances (as will be discussed in

more detail), and are generally not reliable inside modern structures. Nonetheless,

for natural outdoor environments, magnetometers are suitable for bounding the oth-

erwise unlimited growth of heading errors derived from gyros. Much research on the

use of magnetometers for personal positioning applications has been conducted in

recent years. Some approaches use magnetometers exclusively for heading estimation

(Cho et al., 2003), while others integrate it tightly with an IMU (Aparicio et al., 2004;

Yun and Bachmann, 2006).
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4.3 Magnetometer and Pedestrian Dead-Reckoning system

Since the Heuristic Drift Elimination (HDE) method introduced in Borenstein

et al. (2009) cannot be applied to outdoor walking, another sensor modality is needed

to counteract the effects of gyro drift. The magnetometer is a good choice because it

works very well in many outdoor environments.

For the purpose of this chapter, we consider the PDR system to be a black box.

This black box outputs position and heading of the walker in real-time and at foot-

fall intervals. Also available at every instance of footfall are the ZUPT-corrected

accelerometer readings. Since the instrumented foot is stationary during footfalls, we

can exploit the fact that the only acceleration affecting the accelerometers is that of

gravity. Consequently, we can determine roll and pitch, collectively called tilt of the

IMU (which also houses the magnetometer) with considerable accuracy at the mo-

ment of footfall. Using tilt estimates based on accelerometers allows us to estimate

and correct tilt errors.

The remaining problem is estimating heading errors. In order to simplify the

discussion of this topic we introduce the term “virtual gyro”. The output of the

virtual z-axis gyro is the rate of turn around the z-axis. If we were able to estimate

the virtual drift of the virtual z-axis gyro (which is, of course, the result of real drift

in the three real gyros), then we could correct all real gyro drift errors, since we

already have reasonably good estimates for the drift of x and y-axis gyros from the

accelerometers. As such, for the remainder of this chapter we will limit our discussion

to the problem of estimating virtual z-axis gyro drift.

One advantage of treating the PDR system as a black box, instead of trying

to integrate the magnetometer with the full set of attitude/position equations, is

that the proposed magnetometer functionality is modular and easy to port to other

applications. Within the PDR system, the modular approach makes it easy to switch

the magnetometer module on or off—a function that is useful, for example, when
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switching to the HDE module when the user enters a building.

The main contributions of this chapter are:

• A practical calibration method for incorporating magnetometers to the PDR

system that does not require the user to perform any explicit calibration pro-

cedure

• A robust real-time algorithm for sensor fusion and magnetic disturbance detec-

tion by comparing with IMU and the earth magnetic field model

• An evaluation using our real-world experiment dataset that demonstrates the

performance of the algorithm, including results from a test conducted by fire-

fighters

4.3.0.1 Earth magnetic field and the magnetometers

A three-axis magnetometer, such as the one built into the Memsense nIMU used

in our PDR system, can determine the 3-dimensional direction of the magnetic field

around the sensor. Absolute magnetic heading Ψ can be measured by decomposing

the 3-dimensional magnetic field vector into three components, Hx, Hy, Hz, which

are aligned with the navigation frame of the IMU.

Ψ = −atan2(Hy,Hx) (4.1)

where H is the magnetic field in the IMU’s navigation frame (the X-axis coincides

with the magnetic north and the Y axis points east). The angle between magnetic

north and geographic north is called magnetic declination angle which varies from

location to location as shown in Figure 4.2.

The angle between the magnetic field H and the horizon is called magnetic incli-

nation or magnetic dip which also varies with location on earth as shown in Figure

4.3.
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Figure 4.1: The graphical visualization of the Earth’s magnetic field measurement
H from magnetometers. Ψ is the heading with respect to the magnetic
north.
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Figure 4.2: Magnetic declination angle map (Maus et al., 2010)
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Figure 4.3: Magnetic inclination angle map (Maus et al., 2010)

Since the measurement is taken in the IMU’s body frame (where the X-axis points

forward and the Y-axis points to the right of the sensor) the IMU’s pose must be

known or estimated so that the sensor reading in the body frame can be transformed

into the navigation frame. Thus, any misalignment between the magnetometer com-

ponent and the other sensors (notably the accelerometers, which estimate tilt at

footfalls) will contribute to the heading calculation error.

Additional errors result from local magnetic disturbances, such as from electro-

magnetic fields around power lines, electronics, and steel structures. These errors

can be divided into hard and soft iron errors. We only list these error sources below;

a more exhaustive discussion is provided in (Gebre-Egziabher et al., 2001). For all

magnetometer applications, accuracy can be improved significantly by performing a

calibration procedure prior to each trip as will also be discussed, below.
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Figure 4.4: Heading measurement error due to misalignment in various roll angles

4.3.0.2 Typical errors with magnetometers

1. Hard Iron effect

The hard iron effect is caused by nearby ferromagnetic materials that produce

a constant additive magnetic field. This effect results in an offset in the sensor

measurement independent of heading.

2. Soft Iron effect

The soft iron effect is caused by materials that change the magnetic field de-

pending on the orientation of the sensor. This error distorts measurements from

the magnetometer as a function of sensor heading.

3. Misalignment

To some degree, the different sensor modalities inside the IMU are misaligned

relative to each other. This will result in crossover measurements in all sensor

axes.
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4.4 Calibration Procedure

The calibration procedure for the magnetometer is arranged into two steps. The

first step is to eliminate sensor misalignment, while the second step aims at correcting

hard and soft iron errors of the sensor.

4.4.1 Step 1 – Misalignment correction

When rotating the magnetometer horizontally, misalignment causes the magne-

tometer’s Z-axis to be different from the world Z-axis. This causes the measured

field vectors to be located on an inclined plane that corresponds to the misalignment

angle. To remove this misalignment, we fit a plane to all measurements using a linear

least square approach. Then, we rotate the plane so that the normal of the plane is

parallel to the world Z-axis.

Equation of a plane:

aHx + bHy + cHz + d = 0 (4.2)

The normal to this plane is defined as:

n =

[
a√

a2 + b2 + c2
,

b√
a2 + b2 + c2

,
c√

a2 + b2 + c2

]T
(4.3)

In order to rotate the normal vector to make it vertical, a rotation axis and rotation

angle can be found by computing:

r = n× [0, 0, 1]T = [ny,−nx, 0]T (4.4)

θ = arccos

(
n

‖n‖

)
(4.5)

By rotating all subsequence measurements through this angle along the rotation
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axis, we can correct for the misalignment of the magnetometer.

Figure 4.5: Misalignment estimation between magnetometer and accelerometer. The
difference between the blue plane and the black horizontal plane is the
misalignment between the two sensors

4.4.2 Step 2 - Soft iron and hard iron calibration

The second step of the calibration process exploits the fact that in a disturbance-

free environment and after performing Step 1, a full rotation around the Z-axis should

yield magnetic field vectors of identical magnitude. One can picture this condition as

the locus of the tip of all measured field vectors. Since the magnitude of the horizontal

magnetic field, Hxy, is constant, this locus should ideally be a circle.

H2
x +H2

y = (Hxycos(Ψ))2 + (Hxysin(Ψ))2 (4.6)

= ‖Hxy‖2 (4.7)

However, in practice, the hard and soft iron errors will distort that circle. Specifi-

62



cally, the hard iron disturbances move the center of the circle, and the soft iron effects

distort the shape of the circle to that of an ellipse.

An overly optimistic assumption is that there is no crossover effect between the

axes of the magnetometer (Gebre-Egziabher et al., 2001). However, in practice, there

is crossover interaction, and as a result the ellipse becomes tilted.

We can find the center of the tilted ellipse that has been displaced by the hard

iron effects, by using a linear least square approach. The general equation for tilted

ellipse with center at [xc, yc] is:

a (x− xc)2 + b (y − yc)2 + c (x− xc) (y − yc) = 1 (4.8)

By assuming [xc, yc] are small, we can remove quadratic terms:

ax2 + by2 + cxy − (2a+ c)xcx− (2b+ c)ycy = 1 (4.9)

Defining

d = −(2a+ c) e = −(2b+ c)

we can now rewrite the linear equation of the ellipse:

ax2 + by2 + cxy + dx+ ey = 1 (4.10)

By solving Equation (4.10) using linear least squares regression, the displacement

of the center of the ellipse can be found:

xc =
d

−(2a+ c)
yc =

e

−(2b+ c)
(4.11)

63



The equation for the same ellipse but with its center at the origin is:

ax2 + by2 + cxy = 1 (4.12)

Equation (4.12) can be written in matrix form:

x
y


T  a c/2

c/2 b


x
y

 =

x
y


T

M

x
y

 = 1 (4.13)

In order to estimate the soft iron effect, we can decompose the matrix M using

Singular Value Decomposition M = UΣV ∗. Then, the semi-major and semi-minor

axes are the columns of the nearest orthonormal matrix of M , which is A = UV ∗ .

The length of the ellipse is given by the diagonal components of Σ.

By combining the above estimations, we can correct subsequent measurements:

Hcorrected
x

Hcorrected
y

 = A

 1
Σ11

0

0 1
Σ22

AT

Hx − xc

Hy − yc

 (4.14)

After performing these corrections, one can estimate heading from Equation (4.1).

4.4.3 Robust estimation

In practice, apart from the local magnetic field, there are magnetic disturbances

and noise that are also collected during calibration. Since the least square estimation

of Eqs. (4.2) and (4.10) treats all samples equally, noise will add bias to the estimation.

To cope with this problem, the maximum likelihood estimation can be used instead.

In our implementation, we use the Huber estimation (Huber , 2011) with good success.
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Figure 4.6: Result of soft/hard iron calibration with robust estimation. The blue dots
are magnetic field measurements Hx, Hy from the magnetometers. The
color of the small circles around each measurement represent the weight
of each point from the Huber estimation. The black crosshair near the
center shows the estimated displacement of the center due to the hard
iron effect and the green ellipse shows the distortion of the ideal circle
due to the soft iron effect.

4.4.4 Calibration procedure

For best results, a calibration of the magnetometer has to be performed once at

the beginning of every walk. The calibration procedure requires the user to walk

around in a circle for at least one full circle. The walk does not have to follow a

circular contour with any accuracy; the only requirement is that the magnetometer

experiences a full 360-degree rotation around the vertical axis. As a concession to

practicality, we implemented the calibration process so that the system performs it

as a background task. In practice, the user can start a walk anywhere, without per-

forming the calibration circle immediately at the beginning of the walk. The PDR

system will track the user immediately, albeit with the magnetometer calibrated with

the calibration data from the previous walk. Then, when the user has an opportunity

and a suitable magnetically undisturbed location, the user can perform the calibra-

65



tion circle and continue with the mission. The system automatically notices when a

full circle has been completed, performs the mathematical operations needed for the

calibration, and then uses the fresh calibration data from then on.

4.5 Real-time algorithm

4.5.1 Magnetic disturbance detection

During operation, especially inside modern buildings and in urban environments,

a magnetometer is subject to many external disturbances. For example, since our

magnetometer is mounted in the heel of the user’s footwear, large metal objects such as

manhole covers or underground pipes can create large disturbances. To minimize the

effect of external magnetic disturbances, our system attempts to detect the presence

of these temporary disturbances. Once detected, the affected magnetometer readings

can be discarded and replaced by IMU-derived heading estimates.

To detect magnetic disturbances, we monitor two criteria:

1. Magnetic field strength

If the measured field strength deviates by more than a predefined difference

from the theoretical field strength based on the International Geomagnetic Ref-

erence Field (IGRF11) model (Finlay et al., 2010) and World Magnetic Model

(WMM2015) (Maus et al., 2010), the measurement is flagged as a magnetic

disturbance. However, in order to use the IGRF11/WMM2015 model, the local

latitude and longitude have to be known as in Figure 4.7. In practice, we sub-

stitute for the theoretical IGRF11/WMM2015 model the average of measured

field strengths during start up. This is reasonable since we work under the as-

sumption that the system is initialized in an area that has only small magnetic

disturbances. Moreover, the operating area of the the system is limited by hu-

man walking distance; thus, the local magnetic field strength can be assumed to
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be constant. We found empirically that this average provides sufficient accuracy

and it also eliminates the need for users to enter the local coordinates into the

system.
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Figure 4.7: Magnetic field strength map (Maus et al., 2010)

2. Rate of turn

Since the rate of turn from gyroscopes has no effect due to magnetic distur-

bances, we compare the rate of turn derived from changes in the magnetometer

heading to the rate of turn computed from the gyros in the PDR system. If

they disagree, the magnetometer measurement is flagged as a disturbance.

For both criteria, once a disturbance is flagged the flag stays in effect for sev-

eral subsequent magnetometer measurements. We chose this conservative approach

because it is preferable to lose a few measurements rather than introduce erroneous

magnetometer data into the system.
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4.5.2 Sensor fusion

The position output from the IMU of the PDR system is not very noisy. How-

ever, heading errors grow without bound because of drift in the gyros. In contrast,

heading derived from the magnetometer has no drift but has substantial noise due

to external disturbance. To improve PDR position estimation, both measurements

can be combined using a Kalman filter. The magnetic heading measurement that is

not flagged as a disturbance is fed to the Kalman filter as described in the previous

chapter.

In the worse case when the magnetic disturbance is presence everywhere, all the

magnetic measurements will be discarded and the position output from the system

will be the position calculated from IMU only. Thus, the performance of the system

is equal or greater than the original system with IMU only.
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Figure 4.8: (Top) Trajectories output of a subject walked along sidewalks. The blue
line is an errorneous PDR-only output using only an IMU. The orange line
is an output using magnetic heading directly from magnetometer. The
yellow line is an output of a Kalman filter combining the magnetometer
with the PDR system. The bottom figure shows a section of the top figure
with color varied by heading angle covariance. The red dots represent
small covariance and blue for large covariance due to disturbances. The
magnetic disturbances can be seen in several locations along the sidewalks.
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4.6 Experimental results

4.6.1 North Campus walks

Several experiments were conducted around the University of Michigan’s North

Campus area by multiple subjects. The experiments started with a subject wearing a

PDR system outside a building. Right after the recording began, the subject walked in

circles for the magnetometer calibration procedure. After the system reported good

calibration, the subject then walked around the campus and back to the starting

position.

The total distance travelled for each experiment varied from 1 km to 5.4 km. All

33 experiments show that the position errors using the magnetometer are an average

of 1.8% of the distance travelled; the PDR-only error can be much larger. There are a

few experiments in which the PDR-only performs better than the magnetometer, but

in these cases the position errors of both are comparably small. Figure 4.8 shows the

result from one of the experiment in this dataset. The results for all North Campus

experiments are shown in Table 4.1 and Figure 4.9.
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Experiments
Total distance

(m)
% position error per distance travelled
PDR Only PDR+Magnetometer

nc lawn ccw 1379.31 7.62 1.89
nc lawn cw 1384.82 3.80 2.56
nw4 ccw 2611.88 2.87 1.31
nw4 cw 2623.79 37.34 2.83
nw5 1264.10 14.79 1.94
nw6 1300.75 4.88 1.36
nw7 1305.69 3.27 0.37
nw8 2785.73 7.26 0.81
hayward 1444.98 8.75 1.22
nc2 1851.63 76.30 2.06
nc3 2196.42 1.75 3.71
nc4 2514.31 2.82 3.18
nc cmplx 3118.72 28.22 2.02
gps walk3 1810.40 24.09 1.73
gps walk4 3324.33 48.43 0.51
gps walk5 1816.27 19.85 3.46
gps walk6 1888.22 6.33 4.27
gps walk7 1838.03 7.30 3.01
gps walk8 4369.48 35.13 1.80
gps walk9 5446.56 6.65 1.61
nc9 w1 walk1 3793.53 22.86 1.05
nc9 w2 walk1 3743.66 21.39 1.62
nc9 w1 walk2 960.99 6.69 1.61
nc9 w2 walk2 944.17 1.67 1.90
nc10 walk1 2244.01 21.21 1.88
st walk2 2197.53 39.97 4.05
st walk3 2277.42 12.65 2.63
st walk4 2204.82 11.61 0.44
st walk5 2480.00 5.87 0.67
st walk6 1727.60 13.17 0.46
st walk7 1703.16 1.97 0.94
st walk10 1799.74 12.96 1.74
st walk11 1577.03 0.22 1.64

Mean 15.75 1.89
95% CI ±5.64 ±0.36

Min 0.22 0.37
Max 76.30 4.27

Table 4.1: Position error of North campus experiments. Without magnetometer, the
PDR system has average position error as high as 15.8% while incorporat-
ing the magnetometer reduces average position error to 1.9%
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4.6.2 Stone Wall Peak walks

The PDR system and its integrated magnetometer were tested by firefighters

from the California Department of Forestry & Fire Protection (CALFIRE) under

the patronage of the Center for Commercialization of Advanced Technology (CCAT)

(Kwanmuang et al., 2010, 2011). The test area was Stone Wall Peak, a mountainous

hiking trail about 3.2 km (2.0 miles) long and located near San Diego, California,

USA.

The nominal path, recorded by CALFIRE firefighters a few weeks ahead of the

test (with a handheld GPS unit), is shown as the yellow line overlaid over the Google

Earth satellite image of Figure 4.11. Two firefighters were wearing PDR systems

with boots that were instrumented with IMUs. Their trajectories were displayed on

an Operator Control Unit (OCU) in red and green colors, and, for simplicity, we refer

to them as the red and green PDR systems or the red and green walkers, respectively.

One additional experimenter walked the whole trail with a third PDR unit that used

a strap-on IMU that produced blue trajectories.

The resulting trajectories, shown in Figure 4.12 and Table 4.2, suggest that none

of the position errors of any one of the three tested PDR systems exceeded 45 meters

(≈ 1.4% of distance traveled), and most of the time position errors were much smaller,

less than 20 meters. These are rather remarkable results, given the length, ruggedness,

and partially steep inclination of the terrain, as well as the duration of the hike of

more than one hour in each direction. Indeed, for the most part, the performance of

all three PDR units came close to that of consumer grade GPS units.
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Figure 4.10: CALFIRE firefighters set up for a cover in place maneuver during the
hike on Stone Wall Peak trail. The two firefighters with the red head
gear wear our IMU-instrumented Altama boots. (Kwanmuang et al.,
2010)

Stone Wall Peak trail
Total distance ≈3,200 m
PDR#1 (red)
Position error 14.5 m (0.45%)
PDR#2 (green)
Position error 45.79 m (1.43%)
PDR#3 (blue)
Position error 47.56 m (1.48%)

Table 4.2: Position error recorded from three PDR units
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Figure 4.11: The Stone Wall Peak trail near Julian, California, was the test environ-
ment for the outdoor test on Day 3. The highlighted path was generated
using a GPS device. (Kwanmuang et al., 2010)
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Figure 4.12: Trajectories as recorded by all three PDR units using IMU and mag-
netometer only, overlaid over a distortion-free 2-D satellite image from
Google Maps. (Kwanmuang et al., 2010)

76



4.7 Conclusion

This chapter introduced the magnetometer module of our personal locator sys-

tem. We found that in a natural environment and after proper initial calibration, the

magnetometer is capable of bounding heading errors from the IMU very effectively.

In combination with our existing PDR system, which almost completely eliminates

accelerometer drift by mounting the Memsense’s nIMU in the heel of the user’s boot,

position errors are effectively limited to less than 1.9% of distance traveled. Tra-

jectories recorded simultaneously by the three tested systems on three users show

remarkable agreement with each other and demonstrate the robustness of the sys-

tems.

We conclude that with the help of the magnetometer module, our PDR system is

capable of tracking the position of walkers on somewhat rugged terrain for periods

of tens of minutes and more. To be clear, GPS is still the preferred sensor modality

for outdoor hikes. However, in applications where GPS satellites may be temporarily

occluded or the possibility exists for intentional GPS jamming, the magnetometer-

enhanced PDR system can fill in with rather accurate position data during times of

GPS outages.
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CHAPTER V

Maximum-Likelihood Tracking for Pedestrian

Dead-Reckoning System

5.1 Introduction

In this chapter, we propose a new method that utilizes a Pedestrian Dead-Reckoning

(PDR) system (Borenstein et al., 2009) on a human leader and a maximum-likelihood

tracking system on a robot follower. This approach enables the system to work with-

out a Global Positioning System (GPS) or any line-of-sight measurement. In cases

where these measurements are available, however, they can be used to further improve

the PDR system through intermittent recalibration.

The time between the moment the human leader starts walking and the moment

the robot starts following can be anywhere from a few minutes to multiple hours.

Once the leader starts walking, the PDR system onboard the leader transmits the

leader’s poses to the robot. The robot then stores these poses into its database to be

used when it begins following. After the robot has started the mission, the odometry

sensor and laser scanner onboard the robot are used to estimate the current robot

pose and to map the obstacles around the robot using a Simultaneous Localization

And Mapping (SLAM) algorithm (Olson et al., 2006). The robot can then use this

map to determine the trajectory that the human leader has taken.
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One novelty of this method is that it is the first application we know of in which

one agent completes the trajectory estimation of another agent while generating its

own map of the environment.

In the following sections, we present a method of tracking another agent’s po-

sition through the robot’s map using Maximum-Likelihood (ML) estimation and

Stochastic Gradient Descent (SGD)(Robbins and Monro, 1951). Moreover, we ex-

pand the method to be able to track multiple hypotheses in the case of ambiguity in

surroundings.

The main contributions of this chapter are:

• Several methods for tracking: one based on a particle filter, the others based

on maximum likelihood optimization using stochastic gradient descent

• An extension to the maximum-likelihood tracking for enabling the algorithm to

track multiple hypotheses

• An evaluation that demonstrates the performance of the algorithms

5.2 Prior work

Current studies on leader-follower problems use GPS as the primary method for

the robot to follow the human (Teck Chew et al., 2004). By comparing the robot’s

current GPS coordinates with the human’s coordinates, the robot can follow the leader

without line-of-sight requirements. This approach, however, relies on the availability

of a GPS signal that may become degraded due to obstructions.

Another prevalent method is to use stereovision on both the leader and the robot

(Naroditsky et al., 2009). In this scenario the leader sends image features from their

camera to the robot to store in its database. The robot compares its current image

features with the database to estimate the relative position of the human then tries

to move to that position. This method can easily fail, however, if what was the scene

79



for the leader changes and looks different to the robot, or if the scene has too few

distinct features to match. It is also bandwidth intensive.

The leader-follower problem can also be treated as a multiple robot localization

problem (Fox et al., 2000) in which both the leader and the follower use their sensors

to estimate the location of the other. In this case, however, because the leader is

a person rather than a robot, mounting sensors such as a laser scanner is not very

practical.

Other researchers have used inertial measurement sensors on human leaders (Wood-

man, 2010; Beauregard , 2009) and particle filters exploiting a prior map. In this work,

we eliminate the need for a prior map.

5.3 Background

5.3.1 Relative poses

The poses from the PDR system are formed by composing the changes measured

by inertial measurement sensors. Thus, if we modify one pose, all following poses

along the chain are projectively affected.

We can define state variables as relative poses yi between human poses xhi−1 and

xhi . This variable is initialized to be a function of odometry input y0 = f(o):

yi = [x̃i, ỹi, θ̃i, ]
T (5.1)
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Therefore, a transformation T (yi) which transforms a pose xhi−1 to xhi is given as:

xhi =


x

y

θ


h

i

= T (yi)⊗ xhi−1 (5.2)

xhi =


cos(θi−1)x̃i − sin(θi−1)ỹi + xi−1

sin(θi−1)x̃i + cos(θi−1)ỹi + yi−1

θi−1 + θ̃i

 (5.3)

Thus, the pose at time t can be calculated from a function:

xht = T (yt)⊗ T (yt−1)⊗ ....⊗ T (y1)⊗ xh0 (5.4)

Given all relative poses y0:n, the whole trajectory xh0:n can also be obtained in the

same way xh0:n = {xh0 , xh1 , ...., xhn}.

5.4 Method

We present methods for tracking a human leader in the following sections. First

we discuss the human presence probability given obstacle detections. Second, a par-

ticle filter algorithm for tracking is given. Next, we present a Stochastic Gradient

Descentfor Maximum Likelihood tracking (SGD ML) and its variant (SGD ML Z).

One limitation of SGD ML and SGD ML Z is that they are only able to optimize

poses to a single local minima and thus are unable to consider multiple hypotheses.

In section 5.7, we propose a method that allows multiple trajectory hypotheses.
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5.4.1 Human presence probability

Unlike other localization methods that utilize sensors to detect surroundings, ob-

stacles, or structure features around the system to localize, the PDR system only

estimates position and orientation of the human subject without knowing about the

surrounding area. Moreover, the output from the PDR is corrupted by noise in the

inertial measurement sensors.

The follower-robot can utilize its sensors to generate a map around itself. We

assume that the environment did not change between when the human was there

in the past and when the robot is following. The robot applies its knowledge of

the environment to the leader’s trajectory and estimates the probable path that the

human took.

Using the map from the robot, we can estimate the likelihood that a human passed

through that position using a “human presence probability” map. First, we assume

that the human will not be present at the same place as obstacles; for example, a

human will not walk through walls. Second, the further away from an obstacle a point

is, it is increasingly likely that a human will be present in that location. Far away

from obstacles, the human is equally probable to be present anywhere. We can think

of this problem from another perspective. We can conceive of the human leader as a

short-range obstacle detector that is always in free space. The closer this detector is

to any obstacles, the more unlikely this detector would be there. In other domains,

a different human presence probability map may be more appropriate. Our method

can work with any given map.

From these assumptions, we can construct a human presence probability based

on obstacle detection, as in Figure 5.1, where the shaded area on the right is the

closest obstacle. For the area closest to the obstacle (area 1, normally within half a

shoulder’s breadth), human presence is highly improbable. Further away, as in area

2, we use a normalized Gaussian distribution N(l, σ).
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Figure 5.1: Human presence probability, p(x|m), as a function of distance to the
closest obstacle, d. The shaded area to the right is the obstacle. The
curve shows the probability of human presence at each distance from the
closest obstacles.

This distribution reflects the behavior that a human leader is unlikely to stay

close to an obstacle and is increasingly likely to be further away. By setting σ � l,

the continuity at d = s is maintained. Area 3 is where the obstacle is far away and

human presence is most plausible.

Others have observed distributions like this from empirical data (Fajen and War-

ren, 2003). Specifically, our model is:

p(x|mML) =


0 d < s

exp(−(d− l)2/2σ2) s < d < l

1 d > l

(5.5)

where d is the distance to closest obstacle. We can precompute this probability for

each pose inside the map for a given occupancy map using a distance transform and

equation (5.5). An example of an input occupancy map and resulting human presence

probability map is in Figure 5.2.
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Figure 5.2: Example of human presence probability map. (Left) Occupancy map
from a simulated corridor with a divider in the middle (white – free space,
black – obstacles). (Right) human presence probability map (white – high
probability, black – low probability)

5.4.2 Graphical model of maximum likelihood tracking

Our goal is to estimate the trajectory of the human given both odometry data

from the human and measurement data acquired by the robot. That is, we want

p(xh|u, z, o) where xh is the human trajectory, u is the robot’s odometry input, z is

robot laser scanning measurement and o is PDR odometry input.

!
!
!

!
!

!
!
!

!
!
!
!
! !

!
!
!
!

!
!
!

 u0!  u1!

 xr0!  xr2! xr1!

 o1!  o2!

 xh0!  xh2! xh1!

 u2!

 z0!  z1!  z2!

 m!

xr robot’s position 
 
u robot’s motion command 
 
z robot’s measurement 
 
 
m model/map of the world 
 
 
xh human’s path 
 
o PDR odometry 

Figure 5.3: A probabilistic graphical model of human/robot trajectory. The top part
of the graph shows the robot trajectory and its measurements of the
map. The bottom part are a path of the human and the PDR odometry
measurements of the path. The shaded variables are observed.
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The posterior of the human trajectory p(xh|u, z, o) can be written as:

p(xh|u, z, o) =

∫
p(xh,m|u, z, o)dm (5.6)

(Bayes’ rule) ∝
∫
p(u, z, o|xh,m)p(xh,m)dm (5.7)

(Product rule) =

∫
p(o|xh,m, z, u)p(z, u|xh,m)p(xh,m)dm (5.8)

The term p(o|xh,m, z, u) can be applied conditional independence and Bayes’ rule on

the p(z, u|xh,m) yields:

p(xh|u, z, o) ∝
∫
p(o|xh)p(xh,m|z, u)dm (5.9)

(Product rule) =

∫
p(o|xh)p(xh|m, z, u)p(m|z, u)dm (5.10)

(Cond ind.) =

∫
p(o|xh)p(xh|m)p(m|z, u)dm (5.11)

As described in section 5.4.1, the human presence probability map mML is ob-

tained from the map posterior p(m|z, u) generated from the robot.

p(xh|u, z, o) ≈ p(o|xh)p(xh|mML) (5.12)

From the graphical model assumptions in Fig.5.3, the posterior p(xh|u, z, o) can

be written as:

p(xh|u, z, o) = η
∏

p(oi|xhi−1, x
h
i )
∏

p(xhi |mML) (5.13)

5.5 Particle filter tracking

We first implemented particle filter tracking (Monte Carlo localization) (Fox et al.,

2001). MCL has been used widely in localization problems due to the effortlessness

of implementation and it works well in many situations. MCL can also handle multi-
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modal posteriors.

From Equation (5.13), using Bayes’s rule:

p(xh|u, z, o) ∝
∏

p(xhi |xhi−1, oi)
∏

p(xhi |mML) (5.14)

We can use the particle filter and sample from a distribution p(xhi |xhi−1, oi). The

weight of each particle becomes:

wi = p(xhi |mML) · wi−1 (5.15)

Although MCL works well in many scenarios, it can suffer from particle deple-

tion, a situation in which there are not enough particles to accurately represent the

distribution. This particle depletion problem is depicted in Figure 5.4. Increasing

the number of particles can delay the onset of particle depletion, but with increasing

computation cost.

Figure 5.4: Particle depletion problem of monte-carlo localization. The human
walked from left to right. Blue dots are particles representing human
poses. (Right) Particles are all depleted while our maximum-likelihood
algorithm (SGD ML in red) is still able to track the human trajectory.

5.6 Maximum-Likelihood tracking

To avoid particle depletion in the MCL algorithm, we propose a new tracking

algorithm using maximum-likelihood estimation. Since maximum-likelihood tracking
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only keeps track of one trajectory, it is very memory efficient compared to a particle

filter that has to keep track of all the particles.

The closed-form solution of the posterior through induction is given as:

p(xh|u, z, o) = ηp(xh0)p(xh0 |mML)
n∏

i=1

[p(xhi |mML)p(oi|xhi−1, x
h
i )] (5.16)

A cost function or a negative log likelihood of the posterior can be calculated by

taking the logarithm of the equation (5.16):

log(p(xh|u, z, o)) = const+ log(p(xh0)) + log(p(xh0 |mML))+

n∑
i=1

[log(p(xhi |mML)) + log(p(oi|xi, xi))]
(5.17)

The human initial position xh0 is assumed to be a Gaussian distribution N(0,Σ0).

Similarly, the PDR odometry probability p(oi|xi−1, xi) = p(oi|yi) is assumed to be

Gaussian N(y0
i ,Σi) where y0 = f(o).

p(ui|xi−1, xi) = η exp

(
−1

2
(yi − y0

i )TΣ−1
i (yi − y0

i )

)
(5.18)

By inspection, the initial pose p(xh0) is a special case of the above equation, where

y0 = xh0 and y0
0 = 0:

p(x0) = η exp

(
−1

2
xT0 Σ−1

0 x0

)
(5.19)

p(x0) = η exp

(
−1

2
(y0 − 0)TΣ−1

0 (y0 − 0)

)
(5.20)
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We now define di ≡ yi − y0
i . The cost of the PDR odometry update becomes:

n∑
i=0

log(p(oi|xhi−1, x
h
i )) = −1

2

n∑
i=0

(yi − y0
i )TΣ−1

i (yi − y0
i ) (5.21)

= −1

2

n∑
i=0

(di)
TΣ−1

i (di) (5.22)

= −1

2
dTΣ−1d (5.23)

where d = [d0, d1, ..., dn]

As for log(p(xhi |mML)), the probability of the poses given a map can be easily

looked up in the pre-generated human presence probability map (mapML), where xhi

is inside that cell.

p(xhi |mML) ≈ h(xhi ) = mapML(i, j) xhi ∈ cell(ith,jth) (5.24)

log(p(xhi |mML)) = log(h(xhi )) (5.25)

As a result, the negative log-likelihood of the posterior and the cost function

becomes:

J = − log(p(xh|u, z, o)) (5.26)

J =
n∑

i=0

(
− log(h(xhi ))

)
+

1

2
dTΣ−1d+ const (5.27)

Intuitively, we can see that the cost function is a function of the deviation from

the odometry dTΣ−1d and negative cost of the probability of the human can be

presence at a given pose − log(h(xhi )). If the pose deviates too far from the odometry

measurement, the cost will increase as a function of the information matrix Σ−1. A

pose that has high certainty (small Σ), will incur a larger cost than the uncertain

one.

If the human pose xhi is close to obstacles and unlikely to be present there,
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p(xhi |mML) approaches zero, and a substantial cost will be incurred compared to

poses further away from obstacles.

5.6.1 Stochastic Gradient Descent (SGD)

To find the poses that have lowest cost function, Stochastic Gradient Descent

(SGD) can be used as an optimization solver. SGD optimizes each pose one at a time

to reach the cost minima. We use SGD due to its robustness to local minima.

From Equation (5.27), The cost function for a single pose is:

Ji = − log(h(xhi )) +
1

2(n+ 1)
dTΣ−1d (5.28)

Using the chain rule, the gradient of the cost function for a single pose is:

∇Ji = − 1

h(xhi )
· ∂h(xhi )

∂xhi
· ∂x

h
i

∂y
· ∂y
∂d

+
1

n+ 1
dTΣ−1 (5.29)

The first term, h(xhi ) can be easily looked-up from the human presence probability

map as in equation (5.24). Next, ∂h(xhi )/∂xhi is the gradient of the map around xhi .

The term ∂xhi /∂y can be calculated from the Jacobian matrix.

∂xhi
∂y

=

[
∂xh

i

∂y0

∂xh
i

∂y1
...

∂xh
i

∂yn

]
2×3n

(5.30)

where each term
∂xh

i

∂yj
is in the following form, for j = 0:

∂xhi
∂y0

=

1 0
∑i−1

k=0 (− sin(θk)x̃k+1 − cos(θk)ỹk+1)

0 1
∑i−1

k=0 (cos(θk)x̃k+1 − sin(θk)ỹk+1)

 (5.31)
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for j > 0 and j ≤ i:

∂xhi
∂yj

=

cos(θj−1) − sin(θj−1)
∑i−1

k=j (− sin(θk)x̃k+1 − cos(θk)ỹk+1)

sin(θj−1) cos(θj−1)
∑i−1

k=j (cos(θk)x̃k+1 − sin(θk)ỹk+1)

 (5.32)

for j > i:

∂xhi
∂yj

=

0 0 0

0 0 0

 (5.33)

Lastly, since we define d ≡ y − y0, the term ∂y/∂d = 1.

We can define the learning rate λ which will dictate the step size of the state

correction. In addition, the state estimate moves in the opposite direction of the

gradient (5.29). As a result, the state correction becomes:

d = λ

(
1

h(xhi )
· ∂h(xhi )

∂xhi
· ∂x

h
i

∂y
− 1

n+ 1
dTΣ−1

)
(5.34)

We use a learning rate that is harmonically-decreasing λ = 1/t, as in (Robbins and

Monro, 1951). We found that if the initial learning rate λ0 is too large, the state will

move in large steps and is likely to jump around the solution. The worst case scenario

is that it may jump and be trapped outside the convex area of the cost function, and

thus fail to converge. On the other hand, smaller λ0 will slow the convergence down

and the solution may not converge in a reasonable time.

In summary, the SGD ML method is given in the Algorithm 5.1. A simulation

result of the SGD ML algorithm at different iterations is shown in Figure 5.5.

One interesting aspect of the SGD ML method is that, without any information

from the map, the optimization result will be identical to the odometry path. This

is because we do not have any additional information other than the odometry.
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Figure 5.5: Cost of each iteration with varying initial learning rate λ0. The con-
vergence is faster when increasing λ0. Although, once λ0 is large, the
solver takes larger steps. It is likely to jump around the minimum. This
behavior can be seen from fluctuation in the cost.

Algorithm 5.1 SGD ML

1: y ← y0 {y is an initial set of odometry measurements}
2: λ← λ0 {Initialize learning rate λ0}
3: while y not converged do
4: select pose i at random
5: for each pose i do
6: x← T (yi)⊗ ....⊗ T (y1)⊗ x0

7: h← mapML(x) {defined in eq.(5.24)}
8: g ← gradient around x
9: J ← Jacobian ∂xhi /∂y {eq. (5.30)}
10: d← y − y0

11: ∆y ← λ
(
h−1 · g · J − (n+ 1)−1dTΣ−1

)
{eq. (5.34)}

12: y ← y + ∆y
13: end for
14: λ← λ/(λ+ 1)
15: end while
16: return y
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Figure 5.6: A simulation result of the single hypothesis SGD ML algorithm. The blue
line is the maximum likelihood trajectory solution at iteration 1 (top), 2
(middle) and 10 (bottom). The red path is the odometry input from the
PDR system. The black line is the ground truth. The solution quickly
converges in iteration 2. (λ0 = 10−5)
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5.6.2 Zippering SGD ML (SGD ML Z)

SGD ML optimizes the whole trajectory at once. For longer trajectories, this

leads to a large search space for the optimizer and may contain several local minima.

This problem can be seen in Fig.5.7 when the odometry noise is large, and SGD ML

converges to the wrong solution.

We implement a “zippering” method to further improve robustness to local min-

ima. We start optimizing from the first section of the trajectory and then incre-

mentally move the window forward like a zipper. By beginning optimization in the

best-known part of the trajectory, the optimization is more likely to converge to the

correct local minima. The process then repeats and moves to the next section. We

show that this method is more likely to converge to the correct solution.

As a result, the SGD ML Z method improves the robustness of the SGD ML. A

more detailed discussion can be found in the result section.

 

 
ground truth
SGD_ML

 

 
ground truth
SGD_ML_Z

Figure 5.7: (Left) Shows a result of SGD ML (blue) that converges to a wrong so-
lution when the odometry noise is large. (Right) SGD ML Z performs
better and converges to the correct solution. The black line is the ground
truth.
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5.7 Multiple hypothesis tracking

In many situations, the odometry input from the PDR system can lead to am-

biguous trajectories. For example,(considering the two identical corridors in Figure

5.8) if the PDR data is uncertain, the human could have taken either path.

Figure 5.8: The simulated odometry input (green) leads to ambiguous solutions. It
leads to right in the middle of two corridors. Both top and bottom tra-
jectories converge into different local minima in the cost function.

For this reason, the robot needs to track multiple hypotheses so it will not commit

to the wrong solution when there is a lot of ambiguity. To do this, we will repeat

the SGD ML with different odometry estimates consistent with our odometry noise

model, thus exploring other local minima. Specifically, The SGD ML algorithm is

extended by adding two processes, described below.

5.7.1 Perturbation

The initial condition of the state variable y which is normally equal to odome-

try input y0 is perturbed to allow the maximum-likelihood solution to converge to

different local minima.

We repeatedly sample y from the distribution N(y0,Σ) and perform optimization

using SGD ML. Furthermore, we perform this perturbation when the cost of the

current trajectory hypotheses are larger than a threshold indicating poor likelihood.

By sampling from the distribution N(y0,Σ), we can make sure that our solutions are
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unbiased.

5.7.2 Merging Trajectories

We check that the cost function J(y) between two trajectories (y1,y2) is convex

or not by using Eq.(5.35). If it is convex (indicating there is a local minimum of the

cost function between the two trajectories), they are combined and and kept as a new

hypothesis. Two examples of trajectory that can/cannot be merged and their cost as

a function of parameter t is shown in Figure 5.9.

J(t · y1 + (1− t) · y2) 6 t · J(y1) + (1− t) · J(y2) ∀t ∈ [0, 1] (5.35)

First, the combination of two trajectories is simply the average of both. Finally,

the combination is once again optimized by SGD ML to find the maximum-likelihood

solution of the average.

By merging trajectories that are close together, we reduce the number of trajectory

hypotheses, thus, reducing the computational complexity. The fine-scale detail of

each merged trajectory is lost; however, the route that the leader took is much more

interesting for the robot than the fine detail of the paths.

The method is presented in Algorithm 5.2. Figure 5.16 shows the maximum-

likelihood solution after both perturbation and merging.
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Figure 5.9: (Top)Two trajectories with an obstacle between them (left) and without
(right). (Bottom) Cost of the term J(t · y1 + (1− t) · y2) and t · J(y1) +
(1 − t) · J(y2) as a fuction of a variable t. On the left the cost function
is not convex thus trajectories cannot be merged together while the cost
function on the right is convex and can be merged.

Algorithm 5.2 Multiple hypothesis SGD ML

1: n← number of samples
2: s = {} {s is the sample set}
3: for loop n times do
4: sample y from N(y0,Σ)
5: yml ← SGD ML(y)
6: append yml in s
7: end for
8: smerged ← merge(s)
9: srefined = {}
10: for each y in smerged do
11: yml ← SGD ML(y)
12: append yml in srefined
13: end for
14: return srefined
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5.8 Motion between poses

We calculate the cost of a trajectory, recalling from Equation (5.13) that the

posterior of a trajectory can be written as:

p(xh|u, z, o) = η
∏

p(oi|xhi−1, x
h
i )
∏

p(xhi |mML)

We can see that the term
∏
p(xhi |mML) considers only the probability of each pose

at xhi given a map mML. However, it does not consider the motion between poses

[xhi−1, x
h
i ]. This may cause a problem as shown on the left of Figure 5.10. A trajectory

passes through a vertical obstacle, which makes it improbable. However, according

to the above equation, the probability of this trajectory is instead very likely because

the probability of the path is considered only at point x1 and x2 and discarded the

area in between.

x1

x2

x1

x2

Figure 5.10: A trajectory passes through a vertical obstacle which makes it improb-
able. (Left) The probability of the path is only considered at each pose;
thus it discards the motion between them. (Right) The probability of
the path is approximated to be the minimum of all poses along the line,
and is thus still able to capture the area in between.

To solve this problem, we assume that the motion between the poses is linear.

As a result, the term p(xhi |mML) is assumed to be the minimum probability between

all cells along the line between xhi−1 and xhi . The approximation can capture all the
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motion at the poses and between them.

p(xhi |mML, x
h
i−1) ≈ min p(x|mML) x ∈ line(xhi−1, x

h
i ) (5.36)

This above approximation yields better stability than the product of all cells along

the line. Since the probability of each cell is always less then one, a longer path that

has a higher number of cells in between will have less probability than the shorter

ones. This approximation does not affect the optimization process, however, and is

used after the optimization step to calculate the actual cost of the trajectory, thus

reducing false positive solutions.

5.9 Sample space reduction heuristics

In Section 5.7.1, we apply perturbation steps on a trajectory that has high cost,

indicating possible wrong solutions. This may be caused by a trajectory that passes

through obstacles or does not agree with odometry inputs.

To find alternative trajectories, our perturbation step in section 5.7.1 samples y

from the distribution N(y0,Σ). However, the sample space becomes very large if there

are many poses in the trajectory. To reduce the search space, we can start sampling

from the last few poses in the trajectory chain in the hope of finding viable solutions

quickly. If the sampling does not succeed, we can move further back and sample

more poses until a solution is found. This heuristic can find a possible solution much

quicker than sampling from the whole trajectory. The results of this heuristic are

shown in Figure 5.11.

98



Figure 5.11: (Top-Left) The heuristic starts sampling from the third to last pose
(blue) which does not yield any viable solutions. (Top-Right) The sample
space moves back 5 more poses and the sample size is large enough to
include possible solutions which lead to a new optimal trajectory in the
(Bottom) plot, shown in blue.

99



5.10 Results

We evaluate the performance of both SGD ML and SGD ML Z algorithms by

testing them against particle filter tracking as a baseline. First, we repeatedly simulate

them in a synthetically generated environment.

5.10.1 Forest world

The forest world is designed to have equally-spaced obstacles (“trees”) spread over

the map. This obstacle placement has exponentially many possible paths between

any two points on the map. The map is also symmetrical in both directions and

ambiguous for the tracker. The routes between starting and ending locations are

randomly chosen. Furthermore, the simulated odometry measurement is corrupted

with noise and fed to all three algorithms.

One particular result is shown in Figure 5.12, in which all three algorithms are

comparable. At the same time, however, the SGD ML algorithm converges to the

wrong solution in 25 of 100 runs. An example of this problem is in Figure 5.7.

Since the SGD ML optimizes the whole trajectory at once, this also means that the

optimizer tries to optimize a larger search space which may contains several local-

minima. As a result, it is possible that the optimization may converge to a different

local-minima. Meanwhile, particle filter and SGD ML Z do not suffer this issue and

converge to the correct solutions in all runs.

Table 5.1 shows the root-mean-square error (RMSE) of the solutions for each algo-

rithm. The RMSE is computed by averaging RMS error of all poses in the trajectory.

The SGD ML algorithm has smaller errors than the particle filter baseline considering

only those occasions on which it performs correctly. Compared to the particle filter, it

has 35% and 56% improvement in positioning and heading, respectively. Lastly, the

SGD ML Z performs better than SGD ML (43% in positioning and 65% in heading)

and robustly converges to the correct solutions in all runs. Both improvements over
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ground truth
odometry
SGD_ML
SGD_ML_Z
PF

Figure 5.12: (Top) A result from forest world experiment: the obstacles are evenly
placed to allow exponentially possible paths between randomly selected
start and end locations. The simulated odometry input (green) is cor-
rupted with noise. The black line is the ground truth. The blue and red
lines are SGD ML and particle filter output, respectively. (Bottom) The
zoom-in version of the rectangular area in top image.

101



the particle filter are even larger in larger odometry noise simulation.

On average, our SGD ML algorithm implemented in MATLAB uses 5.6 times the

CPU time of the particle filter baseline. Meanwhile, SGL ML Z is 4 times slower

than SGD ML since it optimizes the trajectory repeatedly.

Heading odometry noise σ=0.02 radians

Method
Position RMS error (m) Angular RMS error (radian)
Average Maximum Average Maximum

PF 0.2146 0.3436 0.0532 0.0926
SGD ML* 0.1585 0.2869 0.0340 0.0768
SGD ML Z 0.1494 0.2657 0.0322 0.0725
*Note: SGD ML only converges correctly in 75 of 100 runs.

Heading odometry noise σ=0.05 radians

Method
Position RMS error (m) Angular RMS error (radian)
Average Maximum Average Maximum

PF 1.0743 2.5345 0.1472 0.3053
SGD ML* 0.2470 0.3813 0.0750 0.1348
SGD ML Z 0.2312 0.3787 0.0669 0.1382
*Note: SGD ML only converges correctly in 22 of 100 runs.

Table 5.1: Root-mean-square error (RMSE) comparison between SGD ML,
SGD ML Z and particle filter (PF) from 100 forest world runs.

5.10.2 BBB building

We also test the SGD ML Z algorithm with real odometry data from the PDR sys-

tem. The subject walked inside a typical office building. Due to the non-deterministic

nature of these algorithms, we repeatedly process each experiment 5 times for better

understanding of the performance variation.

From Table 5.3 and Table 5.3, the SGD ML Z performs significantly better than

the particle filter in both position and angular performance. The SGD ML Z has

47% improvement in position and 62% improvement in heading over the particle filter

tracking. This result is in agreement with our simulation result in Section 5.10.1. A

result from one of the experiments is shown in Figure 5.15.
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Figure 5.13: Comparision of average position error of BBB building experiments.

SGD ML Z performs significantly better than particle filter baseline by
having lower positioning error.
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Figure 5.14: Comparision of average angular error of BBB building experiments.
SGD ML Z performs significantly better than particle filter baseline by
having lower angular error.

103



Figure 5.15: An experiment of a subject walked inside a building (Experiment 3 in the
table). The map was generated using SLAM from a robot driven around
the building. The odometry input recorded from the PDR system is in
red and corrupted with noise. The output from SGD ML Z algorithm
(blue) shows an improvement in position estimation.
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Average position error (m) (95% CI)
PF SGD ML Z

Experiment 1 2.250±0.637 1.233±0.5597
Experiment 2 2.412±0.653 1.026±0.3521
Experiment 3 1.278±0.213 0.623±0.2981
Experiment 4 1.241±0.311 0.907±0.1813

Average 1.795±0.610 0.947±0.250

Table 5.2: Average position error of BBB building experiments.

Average angular error (rad) (95% CI)
PF SGD ML Z

Experiment 1 0.277±0.032 0.070±0.0147
Experiment 2 0.267±0.022 0.188±0.0098
Experiment 3 0.365±0.025 0.014±0.0056
Experiment 4 0.365±0.073 0.205±0.0048

Average 0.319±0.053 0.119±0.009

Table 5.3: Average angular error of BBB building experiments.

5.10.3 Multiple hypotheses

The multiple hypotheses version of SGD ML was also tested in a synthetic map.

The map consists of multiple gates that are designed to be ambiguous. The algorithm

performs correctly in sampling and merging trajectories to achieve distinct maximum-

likelihood solutions. Results from the test can be seen in Fig.5.16.
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Figure 5.16: (Left) Maximum likelihood hypotheses with perturbed initial condition.
(Right) Trajectories after merging. Reducing to 4 and 12 distinct max-
imum likelihood hypotheses.
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5.11 Conclusions

We presented particle filter tracking and three versions of maximum-likelihood

tracking using Stochastic Gradient Descent (SGD). The particle filter has the largest

margin of error and suffers from particle depletion. The SGD ML performs well in

low noise odometry, but has an increasing probability of failure when the odometry

noise is increasing. The SGD ML Z achieves better performance than the SGD ML

and robustly performs well in spite of odometry noise. Multiple hypotheses SGD ML

extends the capability of SGD ML to be able to track multiple hypotheses in case

of trajectory ambiguity. Our evaluation characterizes the performance of these three

methods and compares them to baseline particle filter tracking.
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CHAPTER VI

Conclusion and Future Work

We presented an application of a human leader and a robot follower. Such a

system is useful in a “pack mule” application, where the robot carries a heavy load

for the human. There is a challenge to this problem is that the robot often lags well

behind and out of visual contact with the human.

Instead of relying on Global Positioning System (GPS), which can be jammed

or obstructed, our novel approach used a Pedestrian Dead-Reckoning (PDR) system.

This approach overcame those limitations by offering a system that is self-contained,

immune to GPS interference and does not require the installation of any equipment

beforehand.

In addition, we also equipped the robot with high-fidelity mapping sensors and

used the observations of the environment together with the PDR trajectory to deter-

mine the path taken by the human. One novelty of this method is that it is the first

application in which one agent completes the trajectory estimation of another agent

while generating its own map of the environment.

The robot has to make a decision of how to make the next movement after the

human position has been estimated. The challenging is robot needs to explore the

map with the most efficient plan while avoiding obstacles. Though this was not

covered in this thesis, this will be the next important topic to work on.
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6.1 On the filtering of a Pedestrian Dead-Reckoning (PDR)

system

In Chapter III, we found that the original PDR system has large positioning error,

especially in elevation. We hypothesized that the original PDR system suffered from

an overly-simplified sensor model and a limited state estimation approach.

We analyzed design-choices to improve PDR positioning. Due to the non-linearity

of the attitude estimation in the PDR system, we chose the Unscented Kalman Filter

(UKF) for state estimation. We performed a comprehensive comparison between

model complexities and estimation algorithms including the original PDR system,

Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). We presented

comparison between a 9, 12 and 15 states of UKF implementation. Furthermore, we

compared an UKF system with additive and non-additive noise model.

Our experiments showed that the UKF implementation with 15 states and an

additive noise model performed the best. The system improved elevation error on an

average of 63% comparing to the original system; however, it was 2.2 times slower.

In the case that we have a rough estimate of the elevations between each floor of

a building, we can also construct a heuristic algorithm and feed any prior knowledge

of elevation to the UKF to achieve better elevation estimation.

6.2 On the magnetometer-enhanced PDR system in outdoor

environment

The positioning error of the PDR system accumulates rapidly without any addi-

tional sensors. In Chapter IV, we presented a method to augment the PDR system

with a magnetometer to improve positioning in outdoor missions.

Incorporating a magnetometer in a PDR application has a unique challenge. Prior

work required the user to perform a calibration procedure, often including rotating
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the sensors in full circles or turning the sensor in a specific patterns. Thus, these

procedures were not suitable for a sensor mounted on a user’s foot. We presented a

practical approach that does not require the user to perform any explicit calibration

procedure. Our calibration method accounts for mis-alignments between the sensors

and the magnetometer’s error. We presented a real-time algorithm which can detect

magnetic disturbances by comparing the measurement with the earth magnetic model

and Inertial Measurement Unit (IMU) measurement.

Our experiments showed that position error of the PDR system with a magne-

tometer was reduced to 1.9% of the distance travelled. This result was a significant

improvement over the PDR system which had 16% of the position error without

magnetometer.

6.3 On the maximum-likelihood tracking

In Chapter V, we presented our approach in which the robot combined PDR

trajectory received from the human with the robot’s own map.

Unlike a conventional localization problem, in this approach one agent completes

the trajectory estimation of another agent while generating its own map. We pre-

sented several tracking algorithms including a baseline particle filter and maximum-

likelihood tracking. Our maximum-likelihood tracking (SGD ML) utilized Stochastic

Gradient Descent (SGD) to estimate the most probable human trajectory. Moreover,

we presented enhancements such as zippering technique (SGD ML Z) and multiple

hypotheses tracking. This resulted in a fast and memory-efficient tracking algorithm

with an ability to track multiple possible trajectories.

Our maximum-likelihood tracking outperformed the particle filter in both simu-

lation and real-world experiments. From our real-world experiments, the maximum-

likelihood with zippering technique performed the best with an average improvement

of 47% in position and 62% in heading over the particle filter tracking.
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As for the future work, there is room for refinement for the maximum-likelihood

tracking. For example, the map information can be used in the sampling step in the

multiple hypotheses SGD ML algorithm instead of sampling from the whole sample

space. This refinement may speed up the computation time of the algorithm.
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